
ONNX-to-Hardware 
Design Flow for the 

Generation of Adaptive 
Neural-Network 

Accelerators on FPGAs

Federico Manca2, Francesco 
Ratto1

1University of Cagliari (IT), 
2University of Sassari (IT)



Decisions at 
the edge

• Accelerating Neural Networks (NN)
at the edge offer the possibility of 
obtaining low-latency and low-energy 
execution. 



Accelerators

• Specialized frameworks
with dedicated 
architectures offer a 
good solution for 
implementing hardware 
accelerators

• FPGAs offer an optimal 
platform to implement 
this kind of device



Approximate 
Computing

• Approximate Computing 
(AC) exploits the inherent 
resiliency of NN to reduce 
computational complexity 
and memory occupation, 
producing an acceptable 
error on the output.

• The technique used for 
reducing bit data precision 
is called quantization



Architectures
There are different types of 
architectures to implement a 
NN at the edge:

• Streaming: every layer has 
its own hardware block, 
enhancing parallelism;

• Single Unit Processing: all 
the computation is carried 
out on a single engine, 
favouring flexibility;

• Vector Processor Unit: 
specialized processor makes 
use of specialized 
instructions.



FINN and 
HLS4ML

• The dataflow model is naturally suitable 
to express concurrency and parallelism

• In our previous work1 it was chosen to 
use a streaming architecture, derivable 
from the dataflow model, which makes 
it possible to reach high throughput and 
low power consumption by using only 
on-chip memories.

• Other frameworks made the same 
choice: FINN, an experimental 
framework from AMD Research Labs 
based on Theano; HLS4ML, an open-
source software designed to facilitate 
the deployment of machine learning 
models on FPGAs. Both frameworks 
exploit the capabilities of HLS tools.



The tools

• ONNXParser, a Python application 
intended to parse the ONNX models 
and automatically create the code 
for a target device. 

• Vitis HLS, which synthesizes a C or 
C++ function into RTL code 

• Multi-Dataflow-Composer, an open-
source tool that can offer optional 
Coarse-Grained reconfigurability
support for hardware acceleration. 



Template architecture

• The C++ description 
of the layers is based 
on ad-hoc
architecture 
template. For the 
CONV layer, core of 
the CNN, three 
actors are used: Line 
Buffer, Weight, Bias, 
and Conv actors. 



The toolflow

ONNX 
Parser

HDL 
Library

TCL Script

Synthesizable C++ 
Layers

Network Topology (.xml)

Layers Interface (.cal)

HDL 
AcceleratorH

LS
 

W
ri

te
r



Preliminary assessment

• It was carried out an 
exploration with mixed 
precision to test the toolflow
functionality and AC 
capability on an accelerator 
made of 2 convolutional 
layers followed by 1 fully 
connected layer. The 
accelerator classified 
samples from the MNIST
dataset.



The results
Dx-Wy denotes that x
bits are used to
represent activations
and y bits are used to
represent parameters
in fixed-point
precision.

Reduced parameter
precision doesn’t affect
accuracy while
reducing memory
footprint (BRAM
column) and obtaining
a high percentage of
zero weights.



Future Work

• With this preliminary 
assessment some tradeoffs 
were tested for the 
accelerator

• The ultimate goal is to work 
around those tradeoffs and 
obtain runtime adaptivity 
using the power of the 
MDC tool to merge 
different dataflows.



THE END

[1] Ratto, Francesco, et al. "An Automated 

Design Flow for Adaptive Neural Network 

Hardware Accelerators." Journal of Signal 

Processing Systems (2023): 1-23.


	Diapositiva 1: ONNX-to-Hardware Design Flow for the Generation of Adaptive Neural-Network Accelerators on FPGAs
	Diapositiva 3: Decisions at the edge
	Diapositiva 4: Accelerators
	Diapositiva 5: Approximate Computing
	Diapositiva 6: Architectures
	Diapositiva 7: FINN and HLS4ML
	Diapositiva 8: The tools
	Diapositiva 9: Template architecture
	Diapositiva 10: The toolflow
	Diapositiva 11: Preliminary assessment
	Diapositiva 12: The results
	Diapositiva 13: Future Work
	Diapositiva 14: THE END

