
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Neural Networks (NNs) provide a solid way of executing different types of applications speeding up onerous and long workloads. Their implementation at the edge entails many

challenges, such as offering diversity and flexibility, while guaranteeing sustainability. That implies supporting evolving applications and algorithms in an energy-efficient

manner. Using hardware or software accelerators can deliver fast and efficient computation of the NNs, while adaptivity can be exploited to support long-term flexibility.

Handcrafting a NN for a specific device takes a lot of time and experience, and that’s why frameworks for hardware accelerators are being developed. This work in progress is

focused on combining the toolchain proposed by Ratto et al. [1], which has the characteristic capability of favoring adaptivity, with Approximate Computing (AC).

ONNX-to-Hardware Design Flow for the Generation

of Adaptive Neural-Network Accelerators on

FPGAs
Federico Manca2, Francesco Ratto1

1University of Cagliari (IT), 2University of Sassari (IT)

francesco.ratto@unica.it

Ongoing and Future work

A given model is compiled by the FINN compiler which produces a synthesizable C++

description of a heterogeneous streaming architecture. All QNN parameters are kept

stored in the on-chip memory. The computing engines communicate via the on-chip

data stream. An ad-hoc topology is built for the network.

The main operation of the HLS4ML library is to translate the model of the network into

an HLS Project, translating traditional open-source machine learning package models

into HLS , configurable for ad-hoc cases.

TOOLS

•The ONNXParser, a Python application which

parses the ONNX models and

automatically create the code for a

target device;

•The Vitis HLS tool, which synthesizes a C or

C++ function into RTL code for implementation on

AMD FPGAs;

•The Multi-Dataflow Composer (MDC), an open-

source tool that can offer optional Coarse-

Grained reconfigurability support for hardware

acceleration.

TOOLFLOW

The model representation is fed to the ONNX Parser. The generated C++ files, based on an ad-hoc template that

implement the layers and the TCL scripts, for the automatization of the synthesis, are given in input to Vitis HLS. The

HDL library produced by Vitis HLS is given as input to the Multi-Dataflow Composer, together with the XDF file and the
CAL files, which generates the HDL file of the complete dataflow.

Proposed Design Flow

We analyzed two possible solutions that exploit a similar streaming architecture: FINN, an experimental framework from AMD Research Labs based on Theano; HLS4ML, an open-

source software designed to facilitate the deployment of machine learning models on FPGAs, targeting low-latency and low-power edge applications.

Results

Review of the State-of-art

Abstract

➢ Our ongoing work intends to explore mixed precision in adaptive NN

accelerators. NNs have demonstrated strong resilience to errors and can take

great advantage of Approximate Computing.

➢ The ultimate goal will be the efficient runtime management of the system that

implies, as a first step, the combination of the different working points over a

reconfigurable substrate. This latter can be certainly achieved by leveraging on

the whole set of functionality offered by the MDC tool to deploy and operate

reconfigurable and evolvable NN accelerators for CPS, including the one

presented in this study. Resulting accelerators will be able to switch configurations

at runtime to adapt to the desired goal.

Results of exploration with mixed precision data on an accelerator made of two convolutional blocks (consisting of a convolutional layer, max pooling, batch normalization,

and ReLU activation layers) followed by one fully connected layer. The accelerator classifies samples from the MNIST dataset. The model is quantized using post-training

quantization. In the Datatype column, Dx-Wy denotes that x bits are used to represent activations and y bits are used to represent parameters in fixed-point precision. The

reported results target a Zynq7000, comprising a ``xc7z020-1csg484ces'' chip, and have been retrieved through post-synthesis simulations.

0

10

20

30

40

50

60

70

80

90

D32W32 D16W16 D8W16 D16W8 D16W4 D16W2

Zero-weights [%] LUT [%] FF [%] DSP [%] BRAM [%]

Latency [10-7s], Throughput [kFPS], Power [nW], Energy [uJ], and Accuracy [%] for each

case.

It can be noticed that accuracy is not as affected by reducing parameter

precision as it is by reducing activations precision. Moreover, reduced

parameter precision leads to a reduced memory footprint (BRAM column) and

a high percentage of zero weights. This latter can be exploited to combine

quantization with pruning, which skips multiplications by zero. It is planned to

carry out a broader comparison against state-of-the-art, based on significant

on-board measurements and targeting more complex datasets. Nonetheless,

it is worth recalling that state-of-the-art approaches are not conceived to

support runtime adaptivity, which is motivating our research instead

Percentage utilization of LUTs, FFs, DSPs, BRAMs and Zero-Weights for every case

studied.

0

50

100

150

200

250

300

350

Latency [10-7s] Throughput [kFPS] Power [mW] Energy [uJ] Accuracy [%]

D32W32 D16W16 D8W16 D16W8 D16W4 D16W2

[1] Ratto, Francesco, et al. "An Automated Design Flow for Adaptive Neural

Network Hardware Accelerators." Journal of Signal Processing Systems (2023): 1-

23.

ONNX Parser
HDL

Library

TCL Script

Synthesizable C++

Layers

Network Topology

(.xml)

Layers Interface

(.cal)

HDL

Accelerator

H
LS

 W
ri

te
r

CPS SUMMER SCHOOL, 18-22 SEPTEMBER 2023, ALGHERO(IT)

	Diapositiva 1

