Enhancing Trustworthiness and Formalization in the Construction Industry with Modeling Languages and Ontologies

Mario Libro

Department of Engineering for Innovation Medicine

mario.libro@univr.it

UNIVERSITÀ di **VERONA**

of ENGINEERING FOR INNOVATION MEDICINE

Build Trust Vision

- Multinational organization (1963)
- Concrete Mixing&Batching plants
- Heavy civil construction

- Inherent complexity and diverse operations of large-scale construction projects
- Construction projects are often:
 - Delayed, overbudget, inefficient
 - Lack of transparency
- Use of outdated processes & technologies

Build Trust Vision (cont'd)

"Make information across the entire value chain available on a secure and immutable platform"

Monitor Concrete Production

Legal Aspects

BIM: Build Information Modeling

Worker Safety

Environmental **Sustainability**

Financial Aspects

IIoT Sensor

Monitor
Construction
Progress

& Smart
Contracts

Motivations

- Industry 4.0 generates a vast amount of unstructured information
- It Introduces the **need** for a better **understanding** of:
 - Factory operations
 - Production constraints
 - Capabilities of industrial machinery

How can we structure this information?

Objectives

- Enrich SysML models with ontologies reasoning
 - A first step to assess the potential benefits of this methodology
- Utilizing ontologies to provide formal support in plant modeling
 - Make the usage of ontologies more accessible, regardless of expertise
- Check the consistency and feasibility of production recipes
 - Ensures that the production recipes are coherent and executable by the specified production plant

Methodology Overview

Enrich SysML models with ontologies, providing formal support

Make the usage of ontologies more accessible

Check the consistency and **feasibility** of production recipes

SysML v2 Modeling

Research Interests

- Model Based System Engineering
- Knowledge Representation: Ontologies
- Cyber-Physical Production Systems
- Industrial Internet of Things
- Block Chain & Smart Contracts

SysML - System Modeling Language

- General-purpose graphical modeling language
 - Multiple types of diagrams to model different aspects
- We rely on two types of diagrams:
 - Block Definition Diagrams to model system structure
 - Activity Diagrams to model system behavior and production recipes

- Limitations [Myong Lacks formal semantics
- Poor support for tool automation
- Prone to misinterpretation and errors

Ontology and Semantic Reasoner

- Ontology: Formal, explicit, and machine-readable representation of shared knowledge within a domain
- Semantic Reasoner perform automated reasoning to:
 - Deduce new facts from existing axioms within ontologies
 - Enable advanced querying to retrieve information
 - Verify the consistency of the knowledge base

Limitations

- Ontology specification is time-consuming
- Formal methods expertise needed
- Complex and error-prone modeling

tologies

ICELab – Case study

Methodology effectiveness has been verified with two different

Consistent

SysML Model

experiments:

Constraint Violation

Foundational Ontology

- Base knowledge required to define key elements within production plants in general:
 - Concepts, terminology, properties, and relations among concepts
- Partially based on the DIN8580 Standard

