

Leveraging the MLIR infrastructure for the computing continuum

Contact: jiahong.bi, guilherme.dos santos korol, jeronimo.castrillon@tu-dresden.de

MYRTUS Computing Continuum Infrastructure

- ☐ Cross-layer modelling
- lacksquare Multi-layer simulation / analysis
- ☐ Heterogeneous computing nodes
- ☐ Modularity, composability, security

- ☐ MYRTUS¹ is built as a layered cloud-fog-edge continuum
- $oldsymbol{\square}$ MIRTO engine manages resources, connections and workloads across the continuum
- ☐ Design & Programming Environment (DPE) supports definition, implementation and deployment

MYRTUS Continuum Infrastructure

Edge Layer


- · On device
- HMPSoC platforms
- Microanalytic
- External sensing, actuation

Fog Layer

- < 100 km
- < 5 ms response time
- Medium term storage
- · Close to edge processing

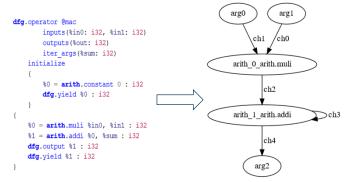
Cloud Layer

- > 100 km
- > 10 ms response time
- Long term storage
- Monitoring and coordination

Design & Programming

Environment (DPE)

Node-Level Optimization and Deployment (NLOP)


- ☐ TOSCA² files will be leveraged for orchestration in the continuum
- ☐ NLOP supports different inputs, such as C and PyTorch
- ☐ Transformations to be implemented for Dataflow Graph generation
- ☐ Mocasin Design Space Exploration (DSE) to find mappings for CGRA
- ☐ RISC-V processors will manage FPGA/CGRA acceleration

MLIR torch-mlir YAML Polygeist dfg-mlir Mocasin Executable CIRCT cgra-mlir LLVM Verilog Configuration Executable MDC **FPGA** CGRA RISC-V CPU Fog / Edge Cloud

Continuum Targets

Dataflow Graph Dialect

- ☐ Multiple backends for different hardware architectures
 - A general FPGA backend³
 - ☐ Cloud FPGA backend⁴
 - ☐ General CPU backend based on OpenMP
- ☐ Ability to describe graphs using Operator/Process
- ☐ Support for iteration arguments for specific tasks
- ☐ Generate the inner dataflow inside an operator

Future Plans and Possibilities

Middle-end and Backend

- ☐ Integration with Mocasin⁵ for DSE
- ☐ Integration with MDC⁶ tools
- ☐ New MLIR dialects for CGRA⁷, etc...

dfg-mlir atop CIRCT8

- ☐ Similar semantics to existing dialects
- ☐ Introduce multiple pull/push for channels
- $oldsymbol{\square}$ Customizable FIFO channel implementation

Time and Adaptivity

- □ Reactor model in Lingua Franca⁹
- ☐ Hybrid mapping technology and adaptive execution on hardware 10
- Palumbo, Francesca, et al. "MYRTUS: Multi-layer 360 dYnamic orchestration and interopeRable design environment for compute-continuum Sys ns." Proceedings of the 21st ACM Inte

- Polumbo, Francesca, et al. "MYRTUS Multi-layer 360 dYnamic orchestration and interope@able design environment for compute-continulum Systems." Proceedings of the 21st ACM Internation (ASIS TOSCA Standard. https://docs.ouis-open.org/tosca/TOSCA-Simple-Profile*/AMLV1_3.0s/TOSCA-Simple-Profile*/AMLV I Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2024. ous multi-cores." Proceedings of the 2021 Drone Systems Engineering and Rapid Simulation and Performan
- ez, Daniel, et al. "STRELA: STReaming ELAstic CGRA Accelerator for Embedded Systems." arXiv preprint arXiv:2404.12503 (2024)
- Charlet royect impsz/ functivinous/ Lobstroh, Marten, et al. "Toward a lingua franca for deterministic concurrent systems." ACM Transactions on Embedded Computing Systems (TECS) 20.4 (2021): 1-27. Smejkal, Till, et al. "E-Mapper: Energy-Efficient Resource Allocation for Traditional Operating Systems on Heterogeneous Processors." arXiv preprint arXiv:2406.1891

