

#### UNIVERSITY OF CAGLIARI

DIEE - Department of Electrical and Electronic Engineering

Spiking Neural Networks for near-sensor processing: an open-hardware experience.

Luca Martis, Gianluca Leone, Paolo Meloni and Luigi Raffo.



## **Topics Covered**







### Introduction









The main goal of my research is to develop optimized systems based on the edge computing paradigm for executing artificial intelligence algorithms.



# Spiking Neural Networks (SNNs)







# **Spiking Neural Networks (SNNs)**





[1] Antonio Vitale et al. "Neuromorphic Edge Computing for Biomedical Applications: Gesture Classification Using EMG Signals". In: IEEE Sensors Journal 22.20 (2022), pp. 19490–19499. doi: 10.1109/JSEN.2022.3194678. [2] "Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware". In: Journal of Neural Engineering 16.2 (2019), p. 026014. doi: 10.1088/1741-2552/aafabc



# **Spiking Neural Network (SNNs)**







### **Open-source EDA Tools**



Significantly reduce entry barriers for students and researchers in chip design.

Allow researchers and designers to collaborate easily.

Interesting for innovations, research, and development.





## **OpenLane Flow**







## **Preliminary Results**







| Network Topology   | Four dense layers ( 128x64x128x64x8 )           |
|--------------------|-------------------------------------------------|
| Spiking Neurons    | Leaky Integrate and Fire (LIF)                  |
| Area               | 2550x2000 $\mu$ m ( 46% of the available area ) |
| SRAM memories      | 57 KB (14 macros)                               |
| <b>Total Power</b> | 54.3 mW                                         |
| F <sub>MAX</sub>   | 89 MHz                                          |



#### **Future Works**



Future work involves completing the system by adding the encoding and decoding modules, with the intention of implementing them using eFPGA.









## **Conclusions**



In this work, an accelerator for spiking neural networks integrated into a System-on-Chip (SoC) has been presented.

These initial results highlight the potential of spiking neural networks for applications on edge devices.

Although the results produced by open-source tools still have a long way to go compared to more advanced commercial tools, they have demonstrated that they can be a viable alternative to commercial solutions

# Reconfigurable ASIC







### **UNIVERSITY OF CAGLIARI**

DIEE - Department of Electrical and Electronic Engineering

Thanks for the attention.

