
 

Marco Brohet (m.j.a.brohet@uva.nl), Francesco Regazzoni
CPS Summer School, 16–20 September 2024, Alghero (Italy)

Securing Software From HardwareA Survey on Thwarting Memory Corruption inSecuring Software From HardwareA Survey on Thwarting Memory Corruption in
Motivation

One of the ways to hijack a software program is by means ofmemory corruption. We distinguishbetween two types below:
char *buf = malloc(8); // Allocate the buffer.

buf[10] = 7; // Spatial violation.

free(buf); // Release the buffer.

buf[4] = 7; // Temporal violation.

To mitigate, software-based approaches exist, but they suffer from high performance overheadsand binary incompatibility issues.

RISC-V

A novel and open Instruction Set Ar-
chitecture (ISA) that allows you to:1.Grab an open hardware design of acompatible processor.
2.Customize it with your new archi-tectural feature.
3. Evaluate the performance, e.g.while running Linux on FPGA.

Research Question

Is a hardware-assisted approach tomitigate memory corruption in software worthwile?
Attack Paths & Protection Layers

Make a pointer invalidfor read/write

Modify a code pointer. . .

. . . to point to non-intended code

Use the code pointer

Control-flow hijack

Modify a data variable. . .

. . . to a malicious value

Use the variable

Data-oriented attack

Interpret the data

Output the data

Information leak

Memory safety

Data integrity

Address space
randomization Data space

randomization

Control-flow integrity
Data-flow integrity

(1)V
alid

atio
n

(2)
Obf

usc
atio

n
(3)

Det
ecti

on

Layer 1: Access Validation

Before a memory access is made,verify that:
1. the pointer is supposed to accessthis address.
2. the area has not been freed earlier.
These implementations focus on:
•Storing which pointers are allowedto access which memory.
•Placing guards around allocatedbuffers.

Layer 2: Data Obfuscation

Randomize the representation ofcode and/or data pointers and its
contents.

Layer 3: Corruption Detection

Detect upon reading a specific valuein memory whether it has been cor-
rupted previously. Includes datashadowing, control-flow and data-flow graphs, crypto-based measures,runtime attestation and taint analysis.

Take-Home Messages

1. Data suggests that a hardware-assisted approach has the potential to improve on runtime over-head while keeping the increase in circuit area to a minimum.
2. Full protection is only possible with compile-time information, which does not solve the issueof binary incompatibility.
3.Harmonization of evaluation standards would be preferred, or at the very least releasing the
source code to make it easier to adapt for research purposes.

4. Protection can still bemore fine-grained, e.g. when overflowing into other fields of a struct.
5. Interesting to see integration in Trusted Execution Environments (TEEs) and whether the attackinformation can be used to automatically craft security patches.

Read more in ACM CSUR

https://doi.org/10.1145/3604906

