

life.augmented

Get to know ST

Danilo PAU Technical Director IEEE, ST and AAIA Fellow, APSIPA Life Member, Sigma XI System Research and Applications

Alghero, Sept 17, 2024

Top 5 Semiconductor foundries

IEEE MILESTONE

Multiple Silicon Technologies on a Chip 1985

The first BCD super-integrated circuit, named L6202, was capable of transistors in single chips for complex, power-demanding applications. controlling up to 60V-5A at 300 kHz. Subsequent automotive, computer, and industrial applications extensively adopted this process technology, which enabled chip designers flexibly and reliably to combine power, SGS (now STMicroelectronics) pioneered the super-integrated silicon-gate process combining Bipolar, CMOS, and DMOS (BCD) analog, and digital signal processing.

May 2021

Beginning in 1984, Thomson Semiconducteurs (now STMicroelectronics) developed multimedia integrated circuits, which accelerated Moving Picture Experts Group MPEG) standards. By 1993, MPEG-2 integrated decoders - including innovative discrete decompression, on-the-fly motion compensation, and display unit - were announced in one silicon die: the STi3500. Subsequent MPEG-2 worldwide adoption made cosine transform (developed jointly with ENST, now Telecom ParisTech), bitstream compressed full-motion video and audio inexpensive and available for everyday use. MPEG Multimedia Integrated Circuits, 1984-1993 IEEE MILESTONE September 2023

life.augmented

Tiny Machine Learning through AI Unified Core Technology

Danilo PAU Technical Director IEEE, ST and AAIA Fellow, APSIPA Life Member, Sigma XI System Research and Applications

Alghero, Sept 17, 2024

The Reasons Why ! THUR OLD attiterion militates MARTIN sha otusaus dete tinuitie patities antil Davin 1111111 Mollif, int

Life.augmented

Where to deploy GenAI ?

Data centers ? **OR** At the Edge ?

- The average word length in the English language is 4.7 characters [1].
- In most cases, the text content of a Tweet can contain up to 280 characters [2].
- A Tweet can contain maximum 60 tokens
- iPhone users worldwide are expected to rise to 1.56 billion by the end of 2024 [3].
- Android OS users worldwide are expected to rise to 3.6 billion by the end of 2024 [4].
- By 2024, there will be a potential of 5.16 billion total available users (TAU) for Multimodal Assistant powered by Generative AI [MAssGenAI]

[1] https://www.wyliecomm.com/2021/11/whats-the-best-length-of-a-word-online/

life.augmented

danilo.pau@st.com

MassGenAl Workload Example

- Qwen2-VL-7B-Instruct-GPTQ-Int8 [5]:
 - state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc.
 - can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc.
 - can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions.
 - supports the understanding of texts in different languages inside images, including most European languages, Japanese, Korean, Arabic, Vietnamese, etc.
- Performances (NVIDIA A100 80GB)
 - Speed (tokens/s) 31.6 (input length 1)
 - GPU memory (GB) 10.11

[5] https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int8

danilo.pau@st.com

How Much is MAssGenAl Feasible on the Cloud?

danilo.pau@st.com

The cloud services giant currently has 162 data centers, live and under construction worldwide. The largest of these is 800 megawatts, and Oracle will soon begin construction of data centers that are more than a gigawatt Oracle is designing a gigawatt-scale data center that will be powered by a trio of small modular reactors (SMRs), to power **131,000 Blackwell GPUs**

Ellison said the electricity demand driven by artificial intelligence and data centers has become so "crazy," the company is turning toward next-generation nuclear power.

Building permits for the three SMRs have already been secured, Ellison said on Oracle's 2024 Q1 earnings call.

https://www.power-eng.com/nuclear/oracle-designing-data-center-to-be-powered-by-trio-of-small-modular-reactors/

~ $1.5 * 10^{15}$ weights; ~ $3 * 10^{15}$ Rosenblatt ¹⁹⁵⁸ ops

Blackwell 10 * 10¹⁵ FLOPS FP16 ~ 6.7x computational power

Exascale Computing = Frontier

Location: Oak Ridge National Laboratory – Tennessee U.S. Performance: 1.2 exaFLOPS Components: 9,472 AMD Epyc 7713 "Trento" 64 core 2 GHz CPUs 37,888 Instinct MI250X GPUs System: 8,699,904 combined CPU and GPU cores Power efficiency rating: 52,59 GFLops Vatt Total power consumption: 150-500 MV

https://www.top500.org/

HGX B100

Smaller and Modular Nuclear Power ... is better

https://www.energy.gov/ne/advanced-small-modular-reactors-smrs.

These advanced reactors, envisioned to vary in size from tens of megawatts up to hundreds of megawatts, can be used for power generation, process heat, desalination, or other industrial uses.

50K Blackwell GB200 5 * 10²⁰ FLOPS FP16 ~ 1.5÷2 B\$ worth, ~ 35_{700W} ÷ 50_{1KW} MWatts each each

Sustainable ?

On 2023 Microsoft and Google respectively consumed 24 and 25 TWh.

CO2 emissions Google: +48% since 2019. Microsoft: + 30% since 2020.

Data centers are projected to 1 PetaWh on 2026 This is due to AI training workloads

Stay tuned about Oracle and Tesla datacenters !

https://www.corriere.it/tecnologia/24_luglio_21/intelligenza-artificiale-ed-elettricita-ora-google-e-microsoft-consumano-piu-di-100-paesi-nel-mondo-1237b2cc-130e-46b0-9256-4032f08d5xlk.shtml

30 years of human learning(†) ~10⁹ seconds † (G. Hinton) <u>https://www.youtube.com/watch?v=N1TEiTeQeg0</u>

world first **digital** satellite service in the US launched in 1994 $\rightarrow 6x10^7 pixels/sec$.

To avoid overfitting of a 10^{15} weights Al, we need $\gg 10^{16}$ data [30 years]

Generating a tsunami of data...

>300 million TeraBytes data created each day

120 ZetaBytes data generated in 2024 > 180 ZetaBytes in 2025

US alone hosts over 2,700 data centers

Global Data Generated Annually

Source: explodingtopics.com

HEADING TO (10²⁴) YOTTA TO (10²⁷) BRONTO Artificial Super Intelligence

Calling Industries for a U-TURN

Human brain vs AI devices capabilities

Challenge: How to bridge this chasm?

The Change in Perspective

U-turn to Tiny AI

	CALLER AND A	
	Tiny Resources	Devise AI workloads to minimize computational and memory (RAM, FLASH) requirements
	Toward Zero Power	Reduce energy needs from any sources by harvesting and scavenging.
	Achieve High Accuracy	Ensure accuracy and confidence is kept at high levels w.r.t. large models
	Live without floating point numbers	Why shall single and double precision be mandatory ?
	Automated deployments	Import, analyze, optimize and map AI workloads on sensors, MCU, MPU, actuators at the highest productivity level
life.augmented		

Tiny Assets so far

The Quest for Energy Efficiency

STEPS FORWARD

Listen to Machine Learning and Embedded Engineers Needs

Interoperability

"The documented agreement reached by a group of individuals who recognize the advantage of all doing certain things in an agreed way". Leonardo Chiariglione

The needs

to trillions of sensors

Automation

"everything that can be automated will be automated". First law Shoshana ZUBOFF

Don't keep calm and don't hand-craft ML

Productivity

Scalability

mented

5 Key steps for Supervised Deep Learning

Deployment un-aware NAS/HPO

Machine Learning Heterogeneity

- Two types must be tackled:
 - **Source Model**: Machine learning models can be very different in terms of algorithms, topologies, size, representation formats, etc.
 - **Execution Target**: processing elements can be very different in terms computational capabilities, available memory, optimized instruction, etc.

STM32 portfolio

STM32

STM32N6x AI Product Line

6000X ML performance uplift*

Dedicated Embedded Neural Processing Unit

- 600GOPS NPU
- 3TOPS/W power consumption

Arm cortex[®]- M55 core

- 1280 DMIPS / 3360 CoreMark
- New DSP extensions (MVE)

Embedded RAM

• 4.2 MB embedded RAM

Computer vision pipeline

- Parallel and MIPI CSI-2 camera I/F
- Dedicated image processor (ISP)

Extended multimedia capabilities

- 2.5D Graphics accelerator
- H264 encoder, JPEG encoder/decoder

Extended security features

• arm TrustZone for the Cortex-M55 core and the NPU

* 600GOPS NPU vs 1GOPS NN peak processing capabilities on STM32H7

STM32 ST Automotive Microcontrollers & Processor from actuation to centralization

Very High Integration Integration/Aggregation Functions Integration Zone Ctrl 28nm Safety arm Stellar P / G (Mid/High) Domains **R52+ Real-time integration** Body X-in-1 platform **Control &** HPC Electrification integration (ADAS, IVI) Computing **Highly Safe Control** Vehicle Chassis & Zone Ctrl Safety & Security Computer arm Stellar X 18nm Safety (Low/Mid) M85/M55 Actuation & Precise controlling AVAS & Standalone Domain ASIL-D Audio xEV (X-1 Zone Electrification} Zone Value Optimization ETH I/O ECU 40nm General Purpose Lighting Key Entry **STM32 A ASIL-B** ctuators & Seats Doors OW

In Sensor AI in Single Package

life.augmented

.tflite

Heterogeneity: DL Differences

Heterogeneity: DL Differences

Heterogeneity: DL Differences

Limiting to binary, int8, float32 there are 3^3=27 combinations to be supported for a single layer

Output

Input

Heterogeneity: Quantization & Tolopology

```
x = x in = Input(X train.shape[1:])
x = \text{Reshape}(x.\text{shape}[1:]+(1,))(x)
x = QActivation("quantized_bits(16, 15, alpha=1)", name="act_0")(x)
x = QConv2D(32, (1, 3),
    kernel quantizer="quantized bits(16, 15, alpha=1)",
    use bias = False,
    name="conv2d 1")(x)
x = BatchNormalization()(x)
x = QActivation("binary(alpha=1)", name="act_2")(x)
x = QDepthwiseConv2D((3, 3)),
    depthwise quantizer="binary(alpha=1)",
    padding="same",
    use_bias = False,
    name="depthconv 1")(x)
x = BatchNormalization()(x)
x = QActivation("binary(alpha=1)", name="act_3")(x)
x = Flatten(name="flatten")(x)
x = QDense(16,
    kernel quantizer="binary(alpha=1)",
    bias_quantizer="binary(alpha=1)",
    name="dense 1")(x)
x = Activation("relu")(x)
x = Dense(y train.shape[-1],
    name="dense out")(x)
x = Activation("softmax", name="softmax")(x)
```


Heterogeneity: Execution Targets

Heterogeneity: Operating Systems

Homogenize Developer Experience

Artificial intelligence on the edge ST solution

Deployment aware NAS/HPO

Not deployable on MCU/SENSOR

python

Removing Deep Learning Frameworks Differences

Removing Deep Learning Frameworks Differences

life.augmented

Heterogeneity: Execution Targets

Memory optimizer

Optimize memory allocation to get the best performance while respecting the constraints of the embedded design

- Memory allocation
- Internal/external memory repartition
- Model-only update option

- Different memory infrastructure e.g.,
 - Single memory component
 - Multiple and homogeneous memories
 - Multiple and heterogeneous memories

Hiding Target Differences

- Different Optimization
 Objectives
 - **Time**: to minimize inference time
 - RAM: to minimize use of memory
 - **Balanced**: trade-off between inference time and memory usage
- Multiple networks instancing in the same application

Hiding Target Differences

- Simplified public APIs: Init + run + deinit
- **Same** for all the execution targets
 - Same application code means portability on all the supported target
- Internal code is optimized for the different targets exploiting the heterogeneous hardware capabilities
- Extra APIs for NPU

Unified View

- 1. Single entry point for endusers: provide machine learning models + options
- 2. Multiple modules and tools included to optimize solutions for different targets
- 3. All solutions have the same interface to simplify integration in applications

Integration

-

Stand Alone Executable
🛞 🖨 💷 chris@ubuntu: ~
[Tue May 16 13:37:38] chritsgubuntu:-S

ST Edge AI Core technology

Common state-of-the-art optimizer technology for ALL ST devices

ST Edge AI Core technology

Common state-of-the-art optimizer technology for ALL ST devices

ISPU-Based Magic Wand

Camera Based Hand Gesture Recognition on STM32N6

Door Knock Recognition On ISPU

ST Edge AI Core CLI

TOF Based Hand Gesture Recognition on STM32F4

Vehicle Monitoring on MLC

eMotor Monitoring on Stellar-E (by HPE)

ISPU Wand with ST Edge Al Core Technology

MLC Truck with ST Edge Al Core Technology

ST EDGE AI CORE TECHNOLOGY enables TOF-based Hand Pose Recognition

ST EDGE AI CORE TECHNOLOGY enables HW accelerated Camera-based Hand Pose Recognition

Al enhancing e-Motor efficiency powered by ST Edge Al Core Technology

STMICROELECTRONICS

Tiny ML means an ecosystem too

ST Edge AI Suite at a Glance

ST Edge AI Suite at a Glance

The most complete developer-centric approach to accelerate the deployment of edge Al

Next Challenges for the Community

On-Device Learning

Next Challenges for the Community

Tiny generative AI (15M-fp32) on STM32MP1

Tiny generative AI (1.1B-2bits) on STM32MP2

LLava on STM32MP2

The man is sitting on the side of a road, which is covered in debris. He appears to be in a state of distress. It seems like he is also in a state of pain. The ground he is sitting on is made of concrete, and there are other people standing in the distance. It looks like there are also orange lights visible in the distance, which could be part of a rescue operation. The scene is quite dramatic and tense.

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

