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= |oT market constantly growing (20B devices by 2025)

= Artificial Intelligence (Al) and Machine Learning (ML)

used for data analytics and classification

= Sustainable? Expected increase in energy
consumption by 3x in 2040 in current trends [IDC'22]

How to increase 10T
efficiency? Edge Al systems

[ But adaptive (domain-specific |
and fast to build: co-design!)

Intenneotlhings (loT): Edge Al Systems

Projecting the ‘Things’ Behind the Internet of Things

From 2014-2020, loT grows at an annual compound rate of 23.1% CAGR
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loT primarily comprised of

20 - computers, mobile phones R

and tablet ‘things’ |
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Billions of Things Connected to the Internet
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1) Less data transmitted over energy-hungry comm. links

) 2) Faster response = Less latency

3) Increased system knowledge (e.g., medical systems)
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loT/Al Market:
$76 billion by 2028

(TIRIAS RESEARCH)

20% Offload to Edge>

WORLD
ECONOMIC
FORUM’24

|

SoCs

Performance
Improvements

lheRSkyaisktherEimit: Gen. Al at the Edge!

Al at the Edge: $15
billion
(savings of 800 MW)

EMERGING TECHNOLOGIES

On-device Alwo
and ensure inclu
the economy
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iEL hEFsixEhEsenseris going into the edge!

* From sensing to sense:
= What is a sensor?

= How do we integrate
advanced computational
approaches (Al, ML, DL)?

= How do we make the sensors

Sensing to
Sense \

context-aware? ravnces (&5 U = 4t
. Sensin N % Precision medicine
= How do we achieve a truly Robotic Surgery
responsive to real-time s, il
environments? "

’%‘ Vlrtual Clinic

= How do we personalize
SenSIng? il = 3 Remote Healthcare
= How do we assure @ T E=
interoperability? Dingnonia Wearables  Diftal Patient Records

§ https://www.frontiersin.org/journals/nanotechnology/articles/10.3389/fnano.2024.1434014/full 4
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State-of-the-art Medical |oT applications include clear
phases for edge Al systems design

: : Power Minimize system energy...
[ Data privacy | A Comm. when
' Data traffic | Biosignal data  pathology detected
4 acquisition
: Processing
ann ann ann Latency . Memory ]
Edge {3 gL dOE Data privacy | | Battery | Time
U0U U0U UUU - Power
4 4 4 | Datatraffic | | Computation | Comm. when
: : : ( Biosignal data needed
Data .M,. .M,. .N\,. B2l power ] acquisition

Processing

A

Time



Inception-v4

i&" iisedelsiCettinglveniComplex: Co-Design Needed

80 -

= High accuracy achieved through:
= Large models veele. . VeEis

Xception

75 | @ “DenseNet-121

‘ Q ResNet-34
| C | t —_ Ml\sl)ggﬁnge—t—gl
ompiex connections = 70 ; OQ o
Ty ° ooglLeNe ’
= Ensembles of CNN models g eng? S e
3 65 P fd-MobileNet
LANE
Efforts to use Al/ML on loT nodes: S 60 S N e
SqueezeNet
edge Al systems B AlexNet
35 . AlexNet
ST 09 10 20 30 40 50
Software + Hardware Optimizations .
Operations (G-Ops)

{ Computation Acceleration | Voltage and Freq scaling loT/Al applic. characteristics are key]

to design the final edge Al system!

6



ié'— lleligetingiVeltageland Frequency at the edge

/ \ g T Voltage (V)
. 0 V=08
Sometimes we can reduce g 4000 | =08
energy by playing with | v-11
5 3500 Labaaniaan V=12
bOth VOItage and > HHHHHHHH
frequency of the system £ 3000
s

5 50 100 170 250 8
Processing Frequency (MHz)

Real application example 12-Lead Heart Beat Classifier:

When choosing the right point we can save up to 58%
of the total energy consumption!

Warning!!
Usually, although this decision highly depends on the platform, for high-bandwidth applications

the optimal frequency is determined by first selecting the lowest voltage that enables a
frequency at which the system can meet its deadlines (i.e. maintaining a uniform frequency) .




i&" JIEligetingiCompllitationtacceleration at the edge

Domain
specific

General

purpose CPU GPU

Performance / Watt

Applications

Ack.: Mark Papermaster: “Advancing EDA Through the Power of Al and High-performance Computing”, DAC59 Keynote, 2022



i&'— VMiany Edge Al Architectures
Energy

! JR Hardware accelerators
efficiency Application .
(———=> specific ASIC
_————— — ——._ Domalin
\ .
y Specific

Process-in-memory (P1M)
Spatial accelerator
« Systolic array
GP data - FPGA
____ parallelization  Coarse Grained Reconfig.
Arrays (CGRA)
Vector machine

W T T

Recent focus
on hardware

specialization  Manycore
for edge Al \ e GPU
I
' General

! purpose



& B Aimost there

@2 NVIDIA.

Table 2: Comparison to prior work.

[3] [7] [8] [9] This work
Process Technology nm 28nm s5nm inm snm
Area (mm?) 15.6 1.9 5.46 3.04 0.153
Supply Voltage (V) 0.55-0.75 0.6-09 055-079 0.58-0.83 0.46 - 1.05
Frequency (MHz) 1000 - 1600 100 -470 332-1156 290 - 880 152 - 1760
On-Chip SRAM (KB) 8192 206 072 2176 141
Data Formats | INT2/4, FP8/16/32 INTE INTE, INT16 INTE/16, FP16 INT4 INT4 V50 INTE
Performance (TOPS) | 102.4 (4b, 0.75V) 1.43 (8b, 0.9V) 14.7 (8b, 0.9V) 3.6 (8b, 0.83V) f e e Y R e e Wy LT .
Energy Efficiency (TOPS/W) | 16.5" (4b, 0.55V) 17.5" (8b, 0.6V) 13.6" (8b, 0.6V) 6.8" (8b, 0.58V) 91.1' (0.46V) | 95.6' (0.46V) | 39.1' (0.46V)
Area Efficiency (TOPS/mm?) 5.22 (4b, 0.75V] 0.75 (Bb, 0.9V} 2.69 (8b, 0.9V) 1.2 (8b, D.83V)

" Input densities not reported. " Measured with 50% non-zero input densities. Includes estimated leakage power.

B. Keller et al., "A 17-95.6 TOPS/W Deep Learning Inference Accelerator with Per-Vector Scaled 4-bit Quantization for
Transformers in 5nm," 2022 IEEE VLSI Technology and Circuits, Honolulu, HI, USA, 2022, pp. 16-17.

It provides energy-efficient inference with transformers (BERT):
95.6 TOPS/W — 1711 inferences/s/W — 0.7/% Accuracy loss

But too high power for Medical edge Al systems...

Nvidia statement: “just a few Watts”

[ Need for domain-specific knowledge, technology alone does not work! }

10




=PrL KERAKENEMUlti=Colier and Domain-Specific

<

= RISC-V Cluster
= SNE — Spiking NN accelerator

= CUTIE — Ternary Neural :
Network

= > 1] PetaOps/s/W for
Transformers

-
Still too high power for edge Al in medical
loT, it does not use domain-knowledge

dical t -design needed!
9 (medical system co-desig e ) y

3mm

N\ < >
S 3mm

M. Scherer et al., "A 1036 TOp/s/W, 12.2 mW, 2.72
uJd/Inference All Digital TNN Accelerator in 22 nm FDX
Technology for TinyML Applications," 2022 IEEE COOL

CHIPS), 2022

11
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e Wihy enly Digital AccelereierS @A E oXsNer1gN o /<M UL Yo Mol
Traditional Digital Accelerators Current-based Analog IMC EnCharge Al Analog IMC
(GPU, TPU, FPGA) (Transistors, NVM, Spintronics) (Standard CMOS Capacitors)
Problem #1: B <-Analog MAC
Bit-by-bit HEEEEEENEENE (>150 TOPS/W)
movement of M EEEEEE
lots of data Memory .-.--<—Array size .-.!!!..--
(data neededjfor Ve 1 limited by | | VeEmeaze | |
compututation) Memor,y reduced SNR HERTompute N
‘CompUte‘ (| = I e i o i ) ) 1R
1
(1) V) ) )
A A A A A
EX TS YT EY Matrix multiply output - e e
Problem #2: (compute results over el onibeit
Digital MAC Processor some bits simultaneously) il regt},lts oser
(<5-10 TOPS/W) all bits simultaneously)

4 )

J. Klein with IBM: ““ALPINE: Analog In-Memory Acceleration with Tight
Processor Integration for Deep Learning”, IEEE TC, 2022: y
_40% more energy efficient for complex NNs! Challenge: system-level interface! )

12
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Applic.-Specific Mecical Edge Al SySiEmSa Rie eIV (Yo N X IX ey

_Feature |

~Tracking | 3;_:_ S*“'B_:f;}_GﬁfL
£ =
EP[ Feature |  huore 5
= T?Bétéct{on"—z' :" = =]
Navion: Visual-Inertial Odometry (VIO) Accelerator e _
24mW at 65nm BioWolf: Brain-Computer Interface Platform

6.3mW providing 38hrs with 65mAh battery

Sparse 3D map
BIOWOLF o
R l ’C  Harvester =
torv
Orientat |onuosuh} N Buck >
79 R Converter =
Legend E
Backend (BE) output
1 teane() T (BE) outpu L. ADSI 298 § Solar
’s state —
R O Ie tatlon Panel
P: Position Graph optimization
i 2D feature (i) BQ27441
L;: 3D Landmark (i) 3D feature tracks Elecnodes Fuel
VEE
Gauge 65 mah
IFE Drone’'s states in horizon: e
( 1), (%)) . ( 4)
Power distribution ]
Gyro & Accelerometer

Measurements

Amr Suleiman et al. JSSC’19 Victor Kartsch et al. TBioCAS’19

13
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e BUPPESpecific Edge Al Reaching a Limit....

- "Efficiency |
| =3 i Plateau
/ _reached! |
En_er_gy D
Efficiency 1 - t___,ﬂleed for
(TBps/W) [ heterogeneous
(s Aol edge Al arch. In
i Ication 1 i
Architectures for ' : (Kgfnel) specific @edlcal domam!J
conventional ML: —¥— FPGA |
DNN, CNN, RNN

2014 2015 2016 2017 2018 2019 2020 2021

New trend: Simple core and different domain-specific accelerators together
(with system codesign = need for open and fast system exploration frameworks!)

14
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DESIGN

CHAMELEON |

- Deeply Heterogeneous Eclge Al SystemsSs INEMAC EnES o NN EE 1l &
r

Low Latency Interconnect Cortex-M

Debug and Trace processor

I'I
3% X-HEE ..

Pas
I:”:I ElSIP
O PyTorch his(4)mi A4

Configurability SO e

Design System IPs .
1. RISC-V core Flows Peripherals and rocessor
I Event Management f lerat
2. Coprocessor interface f??@ ‘ ginatathaal
Vivado HLS Pa<
z > Stratus HLS E[SIP|
3. Peripherals 2 Catapult HLS Y R=@ HW IP
4. Interrupt controller HETER g K
5. Accelerator interface X m Pl : 8
- i o :
6. Power manager RTL uta ::;?;e Lol System |Ps Pl =
Serrar. 41 Design ~ Peripherals
7. BuUS topology : R Flows & . E o p ; ..........................
Verilog third- @ : - VERIFICATION o: :
8. Number of banks VHDL | ac&lerai 03mar1 DMA : : TESTBENCH =
httpS://X-heep.epﬂ.Ch/ SWL o Event Mngt ,VlRTUAL ............... B
https://www.esp.cs.columbia.eq : : @) AMLaccel.  © © PLATFORM Q::

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

-----------------------------------------------------------

https://www.dolphin-design.fr/chameleon-mcu-subsystem/
15
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Accelenatorn-Based Edge Al Exploration:
.tler@geneous Energy Efficient Platform

Demechatising
XEHIEERE @Xﬁ@m@ﬁbﬂ@

Open edge Al hardware framework for Al accelerators
with IP/royalty-free designs! X-HEEP

b
r'-lr'l_.r
NEW IP BLOCKS yiniy

~ AND

" X-HEEP PROVIDES THE BASIC EXTENSIONS HERE!
BLOCKS, AND WE CAN MAKE vour Eee) £\ € )
| THE RESEARCH AROUND IT memories CPU nterrupt |
- Your ( b
Eﬁi%j).(/_/xvevlvg./epfl.ch/Iabs/esI/research/Zd—Bd—svstem—on— MEM Debug
- (S )

. N

Periphs
(8 )

Your

peripherals

This model encourages reutilization, long-term life, and
collaboration between companies and academic institutions

Davide P. Schiavone, et al. "X-HEEP: An Open-Source, Configurable and Extendible RISC-V Microcontroller.“, RISC-V Annual Conference — Europe (2023). 16


https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/

R XERHEERforHealthcare: HEEPocrates

7~
( Main Memory / IMC
[Core 0 Bank0 Banki Bank2 Bank3 || Single-core architecture .
= Control of accelerators flow (parallel execution)
Bank4 Bank5 Bank6 Bank7 ||| = Independent memory banks

N

V-
~

= Switch-off unnecessary banks

BUS [« Synchronizer || = Coarse-Grained reconfigurable accelerator
(CGRA) and in-memory computing (IMC)
Accelerators = CGRA: compute-intense kernels (irregular flow)
] = |MC: Simple ML ops with regular comp. flow

= Power Management Unit

| | | ‘ | = \oltage/frequency over-scaling
— ‘ I DMA ADC = ADC (event-based adaptive sampling)

Power Management Unit

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/ 17



https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/

Shas HEEPoecrates: first Open=Seurce Brain=lnsSeiice N Se e WA WAT« i (Y (I {=

PU: Core-V RISC-V U
= Ibex S e

Bus: AMBA AXI interfaces

Memory: 8 banks, 256KB total

ASIC implementation, 65nm TSMC

= Area: 6mm?
= Frequency: 32KHz/ 470MHz
= Power: 27.7TmW@170MHz, 0.8V

48.1mW@470MHz, 1.2V

Extensions enable ACCELERATORS:
1. Coarse-Grained Reconfig. Array (CGRA)
2. In-memory (bit-line) computing

Complete design done in 5 months (6 people)
https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/

[1] OpenHW group github: https://github.com/openhwgroup 18


https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/
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« 2D Mesh of ALUS /A==~

= Spatio-temporal / &7@ ~ —
kernel mapping ﬁiz\z/ 3 [ Synchronizer
(D Y
= 16 reconfig. cells /5 > i Controller
. A D%/ [P
4 indep. columns = Area (mm?)
T N 0.4 -
— RCO w
1. Synchronizer and Controller o 5| 03
= orchestrates execution = R 3
I 2| o - Datapath
2. Datapath [ s g | Y
= ALUs and register files | g 0.1
RC3 |
3. | port per column j::mr . B8 control path
= input/output to/from memory —_—
DMA
4. Context/Kernel memory (2KB) U [ / J L) = Datapath occupies
= stores CGRA configurations >80% of area
Loris Duch, Soumya Basu, Rubén Braojos, Giovanni Ansaloni, Laura Pozzi, David Atienza, "HEAL-WEAR: An Ultra-Low Power Heterogeneous System for Bio-Signal 19

Analysis" IEEE Transactions on Circuits and Systems: Part | (TCAS-I), September 2017.



i&" BlIwADERBItzlinerarray IMC architecture

BLADE is an in-SRAM computing architecture that utilizes local word-line
groups to perform computations at a frequency 2.8x higher than state-of-
the-art in-SRAM computing architectures.

Energy
—> Shift, add, negation implement MAC

= 2.2GHz Area: 1240 pm?2 Read  Write IMC

" 64KB SRAM Shift and o 376pJ _ 414pJ  381pJ
" 28nm TSMC negation biflisneo IMC operations cost slightly more

logic than memory read operations

But 3x performance gain
i for convolutional layers!

Rios, Marco, et al. "Bit-Line Computing for CNN Accelerators Co-Design in Edge Al Inference.”
IEEE Transactions on Emerging Topics in Computing (2023).

20



EPIFL hiEERoCitatesAceelEBasediEdgerAl for Medical Applications

= Energy consumption: competitive vs. systems in newer tech.

ECG Heartbeat Classifier EEG Seizure Detection CNN
Acquisition Processing Acquisition Processing
Apollo 3 Blue | 0.36 Apollo 3 Blue 18.77
GAP9 10.40 GAP9 7.45
HEEPocrates 6.81 HEEPocrates 13.80
0 5 10 15 20 0 5 10 15 20

Energy consumption (mJ) Energy consumption (mJ)

Competitive and flexible Open-Source Edge Al systems for
medical domain! So, what's next? Use in medical applications!

But a new iteration of HW-SW co-design with learned lessons:
evolution step in our neuro-inspired medical edge Al systems!

21



P Next Tapeouts: New Donein=RriViehizAleee 1o g =t: Eelo M =e [s[WaY

¢ Heepatia (16nm
=Q4, 2024 . _ patia (16nm)
IMC has become ==
near-mem. comput. (NMC) g™ ("™ ]| ™ E ‘
R | BUS : : 3 |
Heepnosis (22nng s 3
" | Our CGRA accel. has “evolved”
I t ]
I BléS I I
Choosing between NMC vs. IMC
— weo | COMPULING IS a Key research topic
el for different edge Al domains!

22



=PrL n n New/CGRA architecture in X-HEEP:
¢ A VeryWice-Register Recomicurelsle/ At AT e TN AAVIVIAY

= Wider and more efficient memory hierarchy

. Main feat :
= Load Store Unit (LSU) Al Teatures

= Loop Control Unit (LCU) o 4x2 armay aff FRGSswitith
= MultipleXer-Control Unit (MXCU) torus commeetiaon
AN COLUMNO i COLUMNI i e RCs symdtironizedpeer
SPW = 4096 bits columm(coommon PEY)

DPW = 32 bits

e 3 VWRSs per callunmn

SRF
SRF

e 1 Scalar ReysiteHHde

‘ ' ‘ ‘ !ﬁ’ﬂc E"‘EH (SRF) per calummn
(o] slml2l0]l ¢

3x speed-up (60% less power) for transformers use SElZEEHSOES

LCU, MXCU)

In medical edge Al appllcatlons )

LA | ————— == = = =11t e Shared scratchpad
memory (SPM)

SPM

Benoit. Denkinger et al., DAC 2022 and TC 2023 23



t Chemical-Physirid Sens

A hybrid ingegated over to ho
—0 7Q'HH-H 4+ Bios= |
el Wl  Deeply Heterogeneous sensing

Bt | 4;“*4\‘-@

Heart rate Memers

systems

Towards long term monitoring for the
medical domain cyber-physical systems

Brudoee
Sensors

i

Hurromusiclal

SeNsors | a " laccate
Gluc . Laccate
) Crochnjal > [ — @) -

LI



cPrL Exploiting Medical Demain [Knexilele ol e oW NeT s pI=X1 e[

ML Deployment Domain-Specific Exploration
Optimization | ayers of Research Lo Performance Tiny ML on domain-
Impacton  gpstraction direction Contribution specific HW

performance  ------ ,

ML on
specialized HW

] | Lightweight

i i ML (retraining)

Efficient

P MV | } (collaborative)

! i use of resources
i | Specialized Architectural

i i hardware design

Key idea: Iterative changes of HW & SW edge Al system
Deployment (as our evolution as biological systems took place!)

Lightweight/Tiny ML
(retraining)

Power savings

25



EPFL : . .
Neuro=Inspirees [FeNVABIerS

= Brain “embedded” computing features:
= Sjze: 4-100 pym neurons, 1.3-1.5 dm?3
= Approx. 80B Neurons, 100 Trillion Synapses
= 20W average (>10,000 TFLOPS)

Neurons are idle most of the time (no power consumed)
Neurons react only to stimulations (small part active)
Neurons integrate storage with processing

Neurons are configurable

Voltage (mV)

Design of medical edge Al systems based on its unique
domain-specific properties and multiple accelerators

0 1 2 3 4 5
Time (ms)

26



=PFL BxpleitingiMedicallknow/ledge in Edga Al Design: ECG
? Spectrogram
CG temporal

150
1-30
properties:
= High frequencies 1 -40
= Low frequencies 00 600 - 3
= Changing intime 3 50 &
= 400 -
. . = =
Different frequencies £ 5 o
. S =) S 200 3
localized in time 5 £ m s
. ) (- 50 8 O hyA NM e e AAVA J\‘ PV PO el 70 %
Uniform sampling = WVV | =
IS sub-optimal 200 “
i i . -400° ' ' ' ' ' '
And if representatlon changes: 0 100 200 300 400 500 600 o
sparse signal = Few events! Coefficient Index

Time (secs)

G. Surrel, et al., “Online Obstructive Sleep Apnea Detection on Wearable Sensors”, IEEE Transactions on Biomedical Circuits and Systems (TBioCAS), May 2018. 27
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A

A

Threshold 4

Threshold 3
'

A
Threshold 2
y

A
Threshold 1

>
A
Digital o
74 S
HO IS data S

BYenEBasediSanmplinglintMedical Edge Al Systems

A Analog
Threihold 5

in: Amplitude (mV)

édt; | ] _E 1l

3.6 3.8

_ 2.8 3 32
> T1me Time (sec)
Y Y Convert. el T an 5
o SIoIIIioiiioDigl  oociYl SAMpling driven by
ESECECECE Sl . biosignal’s properties +

pathology: dynamically tuned

G. Surrel et al., “Event-Triggered Sensing for High-Quality and Low-Power Cardiovascular Monitoring Systems”, IEEE D&T 2019 o8



cPrL Event-Based Adapiive Semupline i = ey ROV R T e LT
¢ EREFL’s Smartcardia Start-Up

360 Hz

S A | ’/\W | ﬂMW\WMMW

P SmartCardia
Wearable

37.8 Hz 5.9 Hz

- Extremely low average sampling
frequency (from 360 Hz o 20 Hz)
[ | .
B -scre detection: 99.73%
*'AJMA‘AJW with uniform sampling N
Detibg : http://Www. .
etaled |, Coarse reconstruction : =4 Al il N il i |
reconstruction, | reconstruction | reconstruction

S. Zanoli, Flavio Ponzina, Tomas Teijeiro, Alexandre Levisse, David Atienza, “An Error-Based Approximation Sensing Circuit for Event-Triggered Low-Power
Wearable Sensors”, [IEEE JETCAS, June 2023. 29



i&'— Edge Al Sysiems i M@@]ﬁ@

Extra challenges than our brain in edge Al: Epilepsy monitoring

1. Sparse events (few / month): Accurate monitoring but long-term
2. Real-time and personalized: Not only inference, but training too!
3. User experience

Social stigma: Patients refuse to wear EEG caps

Need for high sensing accuracy with
suboptimal positions of edge Al systems!

30



Cloud

i&'— iRcveAliedicalthcane: Edge Al + Cloud Big Data

* Edge Al wearables process biosignals or ask for help
to the Cloud when (unknown) events are detected

= Healthy ECG or EEG are easy

But how to learn
without sharing our data?

Level3
machine learning

S

xdillll nmm
Uiy Nlm 4

Wearables

Al
J,

el »i|||
ttui ilm ,,/

1

| LK)

.. . ...__.z|Data collection unit]
o A

Level2
@ machine learning

Observe

Qi

Levell

machine learning
F. Forooghifar, Amir Aminifar, David Atienza, “Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness from Edge to Cloud”, IEEE Transactions on
Biomedical Circuits and Systems (TBioCAS), December 2019 31



EP‘FL Federafted Learning ([FL) ror PU’EV@@ymAW@

1. Centralized 2. Federated ‘
- Components LEEIFI"IiﬂQ Leaming DIGIPREDICT

= ML model: {3

= Data: [ mm -ﬂﬁ - {m

Adaptation/training in Edge Al systems is key: FL to the rescue,
particularly in medical devices, as data is very sensitive!

B[]

N | | 0D | | e N | | OTE
Status Quo Privacy preserving

(data sharing) (NO original data shared)

32



i&" SistemiCeiDes igmViethodoelogy for Medical Edge Al
HW-SW Co-Design Methodology ‘; oo ancresaive

HW Resources power-saving

strategies

SW Optimization

T —— o
E2cNNY [ Quantization”

% 2
ML/CNN

( Energy-Efficient \
Edge Al

Memory - BLAD
IMC accelerator

|
N[22 2
cdembd| o -

Low-bitwidth operands Easter arithmetic

Less memory accesses

Higher Accuracy

Higher Error Resiliency

F. Ponzina, Simone Machetti, Marco Rios, Benoit W. Denkinger, Alexandre. Levisse, Giovanni Ansaloni, Miguel Peon-Quiros, David¥Atienza,

“A hardware/software co-design vision for deep learning at the edge”, IEEE Micro Magazine, November 2022 33
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= Designed to be deployed in EdgeAl systems

= Ensembles of Al can significantly decrease
workload and memory requirements

= How to build E2CNN

= Be N the desired number of instances forming the
ensemble (N=4 in the example)

= Before training, compress the initial CNN via filter
pruning by a factor N

= Replicate the obtained structure N times
= Train each CNN independently

W

1. Reduced computation for edge Al
2. Low memory use for final Al/ML,
benefit from multiple combined models!j

EZCNNHEmbedded Ensembles of ML/CNNs

SW Optimization

HW Resources

Multi-core
low-power platform

‘ Energy-Efficient

Edge Al
Memory - BLADE "4 i

IMC accelerator

= CNN
Replication

» @@

P P

( State-of-the-Art Al Ensembling )

Ensemble
Deployment

»

E2CNN Methodology
= CNN CNN E2CNN —d
Compression Repllcatlon Deployment @@
Kl M = )» )» HP

Flavio Ponzina, Miguel Peon, Andreas Burg and David Atienza, “E2CNNs: Ensembles of Convolutional Neural Networks to Improve
Robustness Against Memory Errors in Edge-Computing Devices”, IEEE Transactions on Computers, August 2021

34



ié'— EZENNESIUselin Medical Edge Al systems

How to train the E2CNN design

How to run inference with EZCNN

= Train each CNN structure = Feed each instance/wearable with the
iIndependently on target dataset target input data to be classified

= Use a (different) random weights = Average the individual output
initialization for each CNN structure predictions to get ECNN output

o @g_' @ _> @ — m ] Averaging
BEPCIP — Rl il
e ﬁ’a__’ @ Tes“"{et o @ _> ﬂ ] e predi:tion
— & — &R — [t —

Pruned CNN training 4 CNNs with same structure, Output prob_ predictions
but different weights
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Quiantizationk(Epillepsy Monitoring as Case Study)

HW-SW Co-Design Methodology

Uniform

Quantization

a)| « Multipliers: 8 bits
* Multiplicands: 16 bits

CNN STRUCTURE )

Layer | Weights | Activations
Conv 8 16
Conv 8 16
FC 16 8

SW Optimization .

) r Multi-core )
)
MUCNN | | [ E2CNN \low-power platform |
e -a ea
ity P

Energy-Efficient
Edge Al

‘ ) 4 [] m
Memory - BLADE
IMC accelerator

>- Multipliers
Optimization
» Layer-based quantization

« Target: multipliers
« 2< N <8 quant. bits

Filter-level
Optimization

c)| * Filter-based Optimization
* Redundant bits removal

Layer | Weights | Activations

\.

= Heterogeneous per-layer quantizati
= Applied on top of a uniformly quantized baseline (a)

= Accuracy-driven
< y

= Quantization in steps (b) and (d) constrained by a user-
defined accuracy level (e.g., medical application)

= Custom bitwidths

Multiplicands
Optimization

+ Layer-based quantization
d)| « Target: multiplicands
* N=8 or N=16 quant. bits

Layer| Weights | Activations
Conv Mixed 16
Conv Mixed 16
EC 16 3

Layer Weights |Activations
Conv Mixed 8
Conv Mixed 16
FC 8 3

SN\

= Filter-level optimization
= Remove convolutional filters if containing only 0s weights
= No impact on accuracy, but significant MACs reduction

Medical system co-optimization calls for exploration of
different types of accelerators: heterogeneous edge Al
architectures!
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= Co-design enables competitive detection of epileptic seizures at minimal energy
= 80% accuracy on average with best E2CNN models of Al/ML instances
= Energy savings up to §5% at system level, without any relevant accuracy drop

oo
o

(=)}
o

Accuracy (%)
s B

Energy Reduction (%)

===ENN + Uniform Quant. =E2CNN + Uniform Quant.

Energy Reduction (%)

Energy Reduction (%)

18 # m‘_ 60 - _ |
40 - 40 S 401
[ 201 201 L 20
0 AlexNet 0 VGG16 o GoogLeNet 0
0 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100

Experimental Results: Feterogencous CEmd21ielNyiN (s HAANeRbLE sy

40 1
20 1 ,. 5
_ ]
ResNext 0 MobileNet u
0 20 40 60 80 100 0 20 40 60 80 100

Energy Reduction (%)

=——E2CNN + Heterogeneous Quant.

Markers correspond to different approx. layers used to improve energy efficiency

Energy Reduction (%)
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Some of the ESL gadgets

building an smarter edge much faster
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Comparison: 24 vs 4 electrodes _

e-Glass first prototype.

Glasses embodiment minimizes social stigma
(new: EpiPhone - bone conducting headset)

e erGllasSiyANsystemifordreal-time seizure monitoring

Sensors:
« EEG:
o 24-bits
« 3 channels
« Soft-dry electrodes

» Accelerometer (3-axial) /Gyroscope

Interfaces:

e Bluetooth 4.2
e USB 2.0

Processing — Medical Edge Al (3@ Gen.):

 HEEPocrates — Ultra-low power edge Al

* Onboard memory: 64 MB (up to 7 days of
recording of EEG signals)

Battery powered: up to 96h monitoring

D. Sopic, A. Aminifar, and D. Atienza, “e-Glass: A Wearable System for Real-Time Detection of Epileptic Seizures,” in 2018
IEEE International Symposium on Circuits and Systems (ISCAS). Florence, Italy: IEEE, may 2018, pp. 1-5. 39



e-Glass vs BIOPAC (commercial
EEG recording equipment)

« Deep learning filter per person

i&'— New e-Glass Rezaches Cood QuellitywiiaNxcisloipll<le M =lallgle

Spontaneous EEG

) 2 Correl. r=0.85
~ 0
E -20 - ——BIOPAC
§_40 I . e-GLalss | |
0 02 04 06 08 3 ‘ 3 e,
Time(s)
_ 2 —sioeac e-Glass and (expensive) BIOPAC show
5 10 high correlation
x
(a
-10 ] ] ] ] ]
0 3 6 9 12 15
Frequency (Hz)

David Atienza (ESL-EPFL) 40
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e beeplyabletehogeneouisimedical Sensing Systems

Biochemistry

Heart rate

Respiration

The sensing task is becoming
Inter and multi modality

Electromyo-

Are our sensing
medical technology

ready to take such
hetereogeneous
challenge?




ié" VersaSens: Mulif-Parmelirs e /AN S Qo RN CEIE N EE

» Plug&Play your edge Al devices as you go to work together

Mam

Medge AI deV|ces are possible (but not there yet). See more

details here: https://www.epfl.ch/labs/esl/research/smart- 4 "ﬂ}\
wearables/versasens/ ]
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<

VersaSens: A Medular Mulimedeal PletiermuN (R ial e eI UL

= Open-source, easily extensible

= Multi-location Sl , n

sensing and

processing { Se nsem od i

Edge Al for knee monitoring, see www.sensemodi.com for more details |cqnfig
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Cough frequency
monitoring

Heart Beat
Classifier

Seizure
detection

(transformery)

Detect

MU

Feature

extraction

Inference

MNon cough

AUDIO
Cough
Feature Peaks
extraction [7] 'Nerence » etect
Cough
Non cough

VersaSens: A Modular Multimeckal Rletiermo (i siCe o= MU L))

Post processing

Y

Input ECG signal

Filtering

Input Signal

A WV M

STFT
!

Patch
Flattening
Embedding

\ a
J/

Transformer Encoder (x4)

Feature
extraction

Cough

Merge
frequency
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N st sNormal
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' : » Ll
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Norm
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i&'— VersaSens: A Modular Muliimedal Pliiem (it iE T NUEES)

Parameter Processing | Deep sleep
Duration IMU 11 ms 489 ms
Audio 114 ms 686 ms
: IMU 27.7 mW
COUgh freq Uency Power consumption Audio 303 MW 9.05 pW
i i Voltage 33V 33V
monltonng Frequency 128 MHz 32 KHz
Energy consumption MU 030 ml 442l
gy consump Audio 345 m] 6.2
IMU 0.31 mJ
Total energy Audio 351 m)
Parameter Processing | Deep Sleep
Duration 22 ms 11978 ms
Heart Beat Power Consumption 8.68 mW 0.29 mW
Classifier Voltage 830 mV 830 mV
Frequency 170 MHz 32 KHz
Energy Consumption 0.19 mJ 3.47 ml
Total Energy 3.66 mJ
Parameter With CGRA | Without CGRA | Deep Sleep
. Processing time 53 ms 79 ms 11947 ms
Seizure Power Consumption 8.86 mW 8.83 mW 0.29 mW
detection Voltage 830 mV 830 mV 830 mV
(transformer) quuency lﬁﬂ_MHZ Iﬁq MHz 32 KHz
Energy Consumption 0.47 mJ 0.70 mJ 3.46 ml
Total Energy 3.93 m) 4.16 m]J
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piitn
i

[m]:
L

Open Eﬁ
VersaEcoSystem

Housing

SW

HW
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¢ Conclusion

* New domain-specific edge Al systems: follow the brain!
= Not just Von Neumann, evolution is needed!

= Democratizing edge Al accel.-based systems co-design @&

2% X-HEEP

= Use of application characteristics: analog and digital features B Cr
i o @

= Accelerator set (and architecture) keeps evolving "if"

1
Client2 |

= Use of FL for efficient edge Al training

= Next-frontier: R T e

1
Client4 |

_________________________________

= Mapping more efficiently Al-based medical applications (not C, but Pytorch...)
= More efficient on-device learning for large Al models at the edge
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easy way to track pulse

Enabled activity and
fitness tracking

First Pulse
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Tracks electrical
activity of heart

Enables miniaturization
of electrical systems

Can this thing
“sense”?...

Adds more measurements
to track fitness
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iéL The Edges How it e

= From sensing (VR) to sense (Mixed Reality):
= Head tracking: 4 visible light camera
Eye tracking: 2 IT camera
Depth sensors
IMUs
uPhones, speakers: VAD, KWS
Real-time environment mesh
Ability to identify and differentiate between objects

HololLens 2

https://www.youtube.com/watch?v=FZhbJZEgKQ4
(55:07 — 57:00)

What about battery?

54


https://www.youtube.com/watch?v=FZhbJZEgKQ4

