

Designing Accelerator-Centric Edge Al Architectures for Cyber-Physical Systems

Dr. Jose Miranda

jose.mirandacalero@epfl.ch

Lecture - IEEE Cyber-Physical Systems Summer School 2024, September 17th, 2024

Internet of Things (IoT): Edge AI Systems

But adaptive (domain-specific and fast to build: co-design!)

3) Increased system knowledge (e.g., medical systems)

The sixth sense is going into the edge!

From sensing to sense:

EPFL

- What is a sensor?
- How do we integrate advanced computational approaches (AI, ML, DL)?
- How do we make the sensors context-aware?
- How do we achieve a truly responsive to real-time environments?
- How do we personalize sensing?
- How do we assure interoperability?

AI/ML Models Getting Very Complex: Co-Design Needed

Inception-v4

High accuracy achieved through:

EPFL

80

50

Targeting Voltage and Frequency at the edge

Sometimes we can reduce energy by playing with both voltage and frequency of the system

Real application example 12-Lead Heart Beat Classifier: When choosing the right point we can save up to 58% of the total energy consumption!

Warning!!

Usually, although this decision highly depends on the platform, for high-bandwidth applications the optimal frequency is determined by first selecting the lowest voltage that enables a frequency at which the system can meet its deadlines (i.e. maintaining a uniform frequency)

Ack.: Mark Papermaster: "Advancing EDA Through the Power of AI and High-performance Computing", DAC59 Keynote, 2022

	[3]	[7]	[8]	[9]		This work	
Process Technology	7nm	28nm	5nm	7nm		5nm	
Area (mm ²)	19.6	1.9	5.46	3.04		0.153	
Supply Voltage (V)	0.55 - 0.75	0.6 - 0.9	0.55 - 0.9	0.58 - 0.83		0.46 - 1.05	
Frequency (MHz)	1000 - 1600	100 - 470	332 - 1196	290 - 880		152 - 1760	
On-Chip SRAM (KB)	8192	206	3072	2176		141	
Data Formats	INT2/4, FP8/16/32	INT8	INT8, INT16	INT8/16, FP16	INT4	INT4 VSQ	INT8
Performance (TOPS)	102.4 (4b, 0.75V)	1.43 (8b, 0.9V)	14.7 (8b, 0.9V)	3.6 (8b, 0.83V)	3.6 (1.05V)	3.6 (1.05V)	1.8 (1.05V)
Energy Efficiency (TOPS/W)	16.5* (4b, 0.55V)	17.5* (8b, 0.6V)	13.6* (8b, 0.6V)	6.8* (8b, 0.58V)	91.1 ⁺ (0.46V)	95.6 ⁺ (0.46V)	39.1 ⁺ (0.46V)
Area Efficiency (TOPS/mm ²)	5.22 (4b, 0.75V)	0.75 (8b, 0.9V)	2.69 (8b, 0.9V)	1.2 (8b, 0.83V)	23.3 (1.05V)	23.3 (1.05V)	11.7 (1.05V)

Table 2: Comparison to prior work.

Input densities not reported. * Measured with 50% non-zero input densities. Includes estimated leakage power.

B. Keller *et al.*, "A 17–95.6 TOPS/W Deep Learning Inference Accelerator with Per-Vector Scaled 4-bit Quantization for Transformers in 5nm," *2022 IEEE VLSI Technology and Circuits*, Honolulu, HI, USA, 2022, pp. 16-17.

It provides energy-efficient inference with <u>transformers</u> (BERT): <u>95.6 TOPS/W – 1711 inferences/s/W – 0.7% Accuracy loss</u> But too high power for Medical edge AI systems... (Nvidia statement: "just a few Watts")

Need for domain-specific knowledge, technology alone does not work!

KRAKEN: Multi-Core and Domain-Specific

- SNE Spiking NN accelerator
- CUTIE <u>Ternary</u> Neural Network
 - > 1 PetaOps/s/W for Transformers

Still too high power for edge AI in medical IoT, it does not use domain-knowledge (medical system co-design needed!) M. Scherer et al., "A 1036 TOp/s/W, 12.2 mW, 2.72 μ J/Inference All Digital TNN Accelerator in 22 nm FDX Technology for TinyML Applications," 2022 IEEE COOL CHIPS), 2022

J. Klein with IBM: ""ALPINE: Analog In-Memory Acceleration with Tight Processor Integration for Deep Learning", IEEE TC, 2022: 40% more energy efficient for complex NNs! Challenge: system-level interface!

Applic.-Specific Medical Edge Al Systems: Digital + Analog Co-Design

Navion: Visual-Inertial Odometry (VIO) Accelerator 24mW at 65nm

Amr Suleiman et al. JSSC'19

BioWolf: Brain-Computer Interface Platform 6.3mW providing 38hrs with 65mAh battery

Victor Kartsch et al. TBioCAS'19

But App.-Specific Edge Al Reaching a Limit...

<u>New trend:</u> Simple core and different domain-specific accelerators together (with system codesign = need for **open and fast system exploration frameworks!**)

Deeply Heterogeneous Edge Al Systems: New Open-Source Frameworks

https://www.dolphin-design.fr/chameleon-mcu-subsystem/

This model encourages reutilization, long-term life, and collaboration between companies and academic institutions

X-HEEP for Healthcare: HEEPocrates

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/

Single-core architecture

Control of accelerators flow (parallel execution)

Independent memory banks

- Switch-off unnecessary banks
- Coarse-Grained reconfigurable accelerator (CGRA) and in-memory computing (IMC)
 - CGRA: compute-intense kernels (irregular flow)
 - IMC: Simple ML ops with regular comp. flow

Power Management Unit

- Voltage/frequency over-scaling
- ADC (event-based adaptive sampling)

HEEPocrates: first Open-Source Brain-Inspired Edge Al Architecture

Bus: AMBA AXI interfaces Memory: 8 banks, 256KB total Davide Christoph Benoît Grégoire Marco Rubén Clément Denisa 12500 G

- ASIC implementation, 65nm TSMC
 - 6mm² Area:
 - Frequency: 32KHz/ 470MHz
 - Power: 27.7mW@170MHz, 0.8V 48.1mW@470MHz, 1.2V
- Extensions enable ACCELERATORS:
 - **Coarse-Grained Reconfig. Array (CGRA)**
 - In-memory (bit-line) computing 2.

Complete design done in 5 months (6 people)

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/

CGRA implementation

- Spatio-temporal kernel mapping
- 16 reconfig. cells
- 4 indep. columns
- 1. Synchronizer and Controller
 - orchestrates execution
- 2. Datapath
 - ALUs and register files
- 3. DMA port per column
 - input/output to/from memory
- 4. Context/Kernel memory (2KB)
 - stores CGRA configurations

Loris Duch, Soumya Basu, Rubén Braojos, Giovanni Ansaloni, Laura Pozzi, David Atienza, "HEAL-WEAR: An Ultra-Low Power Heterogeneous System for Bio-Signal Analysis" IEEE Transactions on Circuits and Systems: Part I (TCAS-I), September 2017.

BLADE: Bit-line array IMC architecture

BLADE is an in-SRAM computing architecture that utilizes local word-line groups to perform computations at a frequency 2.8x higher than state-of-the-art in-SRAM computing architectures.

Rios, Marco, et al. "Bit-Line Computing for CNN Accelerators Co-Design in Edge AI Inference." *IEEE Transactions on Emerging Topics in Computing* (2023).

HEEPocrates: Accel-Based Edge AI for Medical Applications

Energy consumption: competitive vs. systems in newer tech.

ECG Heartbeat Classifier

EEG Seizure Detection CNN

Energy consumption (mJ)

Energy consumption (mJ)

Competitive and flexible Open-Source Edge AI systems for medical domain! So, what's next? Use in medical applications!

But a new iteration of HW-SW co-design with learned lessons: evolution step in our neuro-inspired medical edge AI systems!

EPFL Next Tapeouts: New Domain-Driven Accelerator-Based Edge Al Heepatia (16nm) •Q4, 2024 NMC 0 NMC 1 NMC 2 NMC 3 **IMC** has become SYSTEM DEBUG CPU Systol Array MEMORY NMC 6 near-mem. comput. (NMC) NMC 4 NMC 5 NMC 7 BUS FLL Heepnosis (22nn DMA GRAND CGRA eDRAM ALWAYS-ON PERIPHERALS PERIPHERALS ULP WAKEUP SYSTEM DEBUG NMC CPU MEMORY UNIT **Our CGRA accel. has "evolved"** CONTROLLER BUS **Choosing between NMC vs. IMC** FLL NM-Fixed DMA computing is a key research topic ALWAYS-ON PERIPHERALS PERIPHERALS 32bit SRAM for different edge AI domains! MaxWel

Benoit. Denkinger et al., DAC 2022 and TC 2023

Deeply Heterogeneous sensing systems

Towards long term monitoring for the medical domain cyber-physical systems

ML Deployment

Domain-Specific Exploration

+40

0

-55

-70

Threshold

0

Voltage (mV)

Neuro-Inspired: How Does our Brain "Work"?

Time (ms)

- Brain "embedded" computing features:
 - Size: 4-100 μm neurons, 1.3-1.5 dm³
 - Approx. 80B Neurons, 100 Trillion Synapses
 - 20W average (>10,000 TFLOPS)

ECG temporal properties:

- High frequencies
- Low frequencies
- Changing in time

Uniform sampling is sub-optimal

And if representation changes: sparse signal = Few events!

Exploiting Medical Knowledge in Edga Al Design: ECG

<u>Spectrogram</u>

27

G. Surrel, et al., "Online Obstructive Sleep Apnea Detection on Wearable Sensors", IEEE Transactions on Biomedical Circuits and Systems (TBioCAS), May 2018.

Event-Based Sampling in Medical Edge Al Systems

S. Zanoli, Flavio Ponzina, Tomas Teijeiro, Alexandre Levisse, David Atienza, "An Error-Based Approximation Sensing Circuit for Event-Triggered Low-Power Wearable Sensors", IEEE JETCAS, June 2023.

Extra challenges than our brain in edge AI: Epilepsy monitoring

Sparse events (few / month): Accurate monitoring but long-term
 Real-time and personalized: Not only inference, but training too!
 User experience

Social stigma: Patients refuse to wear EEG caps

Need for high sensing accuracy with suboptimal positions of edge Al systems!

F. Forooghifar, Amir Aminifar, David Atienza, "Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness from Edge to Cloud", IEEE Transactions on Biomedical Circuits and Systems (TBioCAS), December 2019

Privacy preserving

(NO original data shared)

Status Quo

(data sharing)

EPFL

"A hardware/software co-design vision for deep learning at the edge", IEEE Micro Magazine, November 2022

E²CNN: Embedded Ensembles of ML/CNNs

- Designed to be deployed in EdgeAI systems
 - Ensembles of AI can significantly decrease workload and memory requirements
- How to build E²CNN
 - Be N the desired number of instances forming the ensemble (N=4 in the example)
 - Before training, compress the initial CNN via filter pruning by a factor N
 - Replicate the obtained structure N times
 - Train each CNN independently
- Reduced computation for edge AI
 Low memory use for final AI/ML, benefit from multiple combined models!

Flavio Ponzina, Miguel Peon, Andreas Burg and David Atienza, "E2CNNs: Ensembles of Convolutional Neural Networks to Improve Robustness Against Memory Errors in Edge-Computing Devices", IEEE Transactions on Computers, August 2021

E²CNN – Use in Medical Edge Al systems

How to train the E²CNN design

- Train each CNN structure independently on target dataset
- Use a (different) random weights initialization for each CNN structure

How to <u>run inference</u> with E²CNN

- Feed each instance/wearable with the target input data to be classified
- Average the individual output predictions to get E²CNN output

Quantization (Epilepsy Monitoring as Case Study)

					. ``
	Uniform	(CNN STRU	CTURE	
	Quantization	Layer	Weights	Activations	
a)	Multipliers: 8 bits	Conv	8	16	
1	Multiplicands: 16 bits	Conv	8	16	
		FC	16	8	
	Multipliers				
	Optimization	(CNN STRU	CTURE	
	 Layer-based guantization 	Layer	Weights	Activations	
)	Target: multipliers	Conv	4	16	
	• $2 \le N \le 8$ quant hits	Conv	5	16	
		FC	16	3	
	Filter-level	-			
Γ	Optimization		CNN STRU	CTURE	
	Eilter based Optimization	Layer	Weights	Activations	
)		Conv	Mixed	16	
	Redundant bits removal	Conv	Mixed	16	
	Multiplicando	FC	16	3	K
Г	Multiplicands Optimization	1			
			CNN STRU	CTURE	
1/	Layer-based quantization	Layer	Weights	Activations	
<i>I</i>)	larget: multiplicands	Conv	Mixed	8	
	 N=8 or N=16 quant. bits 	Conv	Mixed	16	
					_

- HW-SW Co-Design Methodology SW Optimization E²CNN Quantization Multi-core Iow-power platform Memory - BLADE IMC accelerator Memory - BLADE
- Heterogeneous per-layer quantization
 - Applied on top of a uniformly quantized baseline (a)
- Accuracy-driven
 - Quantization in steps (b) and (d) constrained by a userdefined accuracy level (e.g., medical application)
- Custom bitwidths
- Filter-level optimization
 - Remove convolutional filters if containing only 0s weights
 - No impact on accuracy, but significant MACs reduction

Medical system co-optimization calls for exploration of different types of accelerators: heterogeneous edge Al architectures!

- Experimental Results: Heterogeneous Quantization with Edge Al Co-Design
- Co-design enables competitive detection of epileptic seizures at minimal energy
 - 80% accuracy on average with best E2CNN models of AI/ML instances
 - Energy savings up to 55% at system level, without any relevant accuracy drop

Some of the ESL gadgets

building an smarter edge much faster

38

e-Glass^{1:} A system for real-time seizure monitoring

Sensors:

- EEG:
 - 24-bits
 - 3 channels
 - Soft-dry electrodes
- Accelerometer (3-axial) /Gyroscope

Interfaces:

- Bluetooth 4.2
- USB 2.0

Processing – Medical Edge AI (3rd Gen.):

- HEEPocrates Ultra-low power edge AI
- Onboard memory: 64 MB (up to 7 days of recording of EEG signals)

Battery powered: up to 96h monitoring

D. Sopic, A. Aminifar, and D. Atienza, "e-Glass: A Wearable System for Real-Time Detection of Epileptic Seizures," in 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Florence, Italy: IEEE, may 2018, pp. 1–5.

New e-Glass Reaches Good Quality with Personalized Training

e-Glass vs BIOPAC (commercial EEG recording equipment)

Deep learning filter per person

e-Glass and (expensive) BIOPAC show high correlation

David Atienza (ESL-EPFL)

Deeply Heterogeneous medical Sensing Systems

The sensing task is becoming inter and multi modality

Are our sensing medical technology ready to take such hetereogeneous challenge?

VersaSens: Multi-Parametric Edge Al Network of Wearables

Plug&Play your edge AI devices as you go to work together

EPFL

VersaSens: A Modular Multimodal Platform (Different Medical Uses)

EPFL

VersaSens: A Modular Multimodal Platform (Different Medical Uses)

Heart Beat Classifier

Seizure detection (transformer)

Cough frequency monitoring

Parameter		Processing	Deep sleep
Duration	IMU	11 ms	489 ms
Duration	Audio	114 ms	686 ms
Power consumption	IMU	27.7 mW	$9.05 \mu W$
Tower consumption	Audio	30.3 mW	9.05 µW
Voltage		3.3 V	3.3 V
Frequency		128 MHz	32 KHz
Energy consumption	IMU	0.30 mJ	4.42 μJ
Energy consumption	Audio	3.45 mJ	6.2 μJ
Total energy		IMU	0.31 mJ
iotar energy		Audio	3.51 mJ

Heart Beat	
Classifier	

Seizure
detection
(transformer)

Parameter	Processing	Deep Sleep
Duration	22 ms	11978 ms
Power Consumption	8.68 mW	0.29 mW
Voltage	830 mV	830 mV
Frequency	170 MHz	32 KHz
Energy Consumption	0.19 mJ	3.47 mJ
Total Ener	gy	3.66 mJ

Parameter	With CGRA	Without CGRA	Deep Sleep
Processing time	53 ms	79 ms	11947 ms
Power Consumption	8.86 mW	8.83 mW	0.29 mW
Voltage	830 mV	830 mV	830 mV
Frequency	160 MHz	160 MHz	32 KHz
Energy Consumption	0.47 mJ	0.70 mJ	3.46 mJ
Total Energy	3.93 mJ	4.16 mJ	

VersaSens: A Modular Multimodal Platform (Different Medical Uses)

		VersaAPI	
	Sensor n	Sensor 2	Sensor 1
	I2C	SPI	Timer
Zep	VersaSDK	Storage	PMIC
	tem Init	ILE Sys	Nordic B
	lordic SDK		

Next-frontier:

- Mapping more efficiently AI-based medical applications (not C, but Pytorch...)
- More efficient on-device learning for large AI models at the edge

New domain-specific edge AI systems: follow the brain!

Not just Von Neumann, evolution is needed!

- Democratizing edge AI accel.-based systems co-design
 - Use of application characteristics: analog and digital features
 - Accelerator set (and architecture) keeps evolving
 - Use of FL for efficient edge AI training

Thanks for Your Attention!

Questions? jose.mirandacalero@epfl.ch https://www.epfl.ch/labs/esl/research/

Acknowledgements: Flavio Ponzina, Simone Machetti, Saleh Baghersalimi, Benoît Denkinger, Dr. Giovanni Ansaloni, Dr. Christoph Müller, Dr. Davide Schiavone, Dr. Miguel Peón-Quirós,

And thanks to:

EPFL

Key References and Bibliography (1/3)

Single- vs. multi-core smart wearables platform design

- Michele Caon, et al., "Scalable and RISC-V Programmable Near-Memory Computing Architectures for Edge Nodes", ArXiv, 2024.
- Cristian Tirelli, et al., "SAT-based Exact Modulo Scheduling Mapping for Resource-Constrained CGRAs", ACM JETC, June 2024.
- Flavio Ponzina, et al., "A hardware/software co-design vision for deep learning at the edge", IEEE Micro, 2022.
- B. Denkinger, et al., "A Very-Wide-Register Reconfigurable-Array Architecture for Low Power Embedded Devices", Proc. DAC, 2022.
- E. De Giovanni, et al., "Modular Design and Optimization of Biomedical Applications for Ultra-Low Power Heterogeneous Platforms", IEEE T-CAD (ES-WEEK Spec. Issue), November 2020.
- L. Duch, et al., "*i-DPs CGRA: An Interleaved-Datapath Reconfigurable Accelerator for Embedded Bio-signal Processing*", Embedded Systems Letters, June 2019.
- L. Duch, et al., "HEAL-WEAR: An Ultra-Low Power Heterogeneous System for Bio-Signal Analysis", IEEE TCAS-I, September 2017.
- R. Braojos, et al. "Nano-Engineered Architectures for Ultra-Low Power Wireless Body Sensor Nodes", Proc. of CODES-ISSS, 2016.

ULP wearables computation optimization and ECG/EEG application mapping

- R. Zanetti, et al., "*Real-Time EEG-Based Cognitive Workload Monitoring on Wearable Devices*", IEEE TBME, 2022.
- D. Pascual, et al., "A Self-Learning Methodology for Epileptic Seizure Detection with Minimally Supervised Edge Labeling", DATE 2019.
- D. Sopic, S. Murali, F. Rincon, D. Atienza, "Touch-Based System for Beat-to-Beat Impedance Cardiogram Acquisition and Hemodynamic Parameters Estimation", Proc. DATE, 2016.
- D. Bortolotti, et al., "Approximate Compressed Sensing: Ultra-Low Power Biosignal Processing via Aggressive Voltage Scaling on a Hybrid Memory Multi-core Processor", Proc. of ISLPED, 2014.
- R. Braojos, H. Mamaghanian, A. Junior, G. Ansaloni, F. Rincón, S. Murali, D. Atienza, "Ultra-Low Power Design of Wearable Cardiac Monitoring Systems", Proc. DAC, 2014.
- F. Rincon, J. Recas, N. Khaled, D. Atienza, "Development and Evaluation of Multi-Lead Wavelet-Based ECG Delineation Algorithms for Embedded Wireless Sensor Nodes", IEEE TITB, Nov. 2011

Key References and Bibliography (2/3)

Epileptic seizure and ECG monitoring and detection with edge AI wearable devices

- S. Baghersalimi, et al., "M2SKD: Multi-to-Single Knowledge Distillation of Real-Time Epileptic Seizure Detection for Low-Power Wearable Systems", ACM TIST, June 2024.
- S. Baghersalimi, et al., "Real-Time Federated Learning for Epileptic Seizure Detection", IEEE Journal of Biomedical and Health Informatics (J-BHI), August 2021.
- F. Forooghifar, et al., "A Self-Aware Epilepsy Monitoring System for Detection of Seizures in Real Time", Elsevier MONET, August 2019. Link: <u>https://rdcu.be/bN1Bo</u>
- U. Pale, et al., "Combining general and personal models for epilepsy detection with hyperdimensional computing", Nature Artificial Intelligence In Medicine (ARTMED), January 2024.
- L. Orlandic, et al., "Design, Optimization, and Evaluation of a Novel Energy-Efficient, Low-Memory, Real-Time R-Peak Detection Algorithm for Wearable Devices", Proc. of EMBC, 2019.
- D. Sopic, et al., "Real-Time Event-Driven Classification Technique for Early Detection and Prevention of Myocardial Infarction on Wearable Systems", IEEE TBioCAS, October 2018.
- D. Sopic, et al., "e-Glass: A Wearable System for Real-Time Detection of Epileptic Seizures in Children", Proc. of ISCAS, 2018.
- H. Mamaghanian, et al., "Design and Exploration of Low-Power Analog to Information Conversion Based on Compressed Sensing", IEEE JETCAS, 2012.

ULP multi-biosignal analysis and classification flows

- L. Orlandic, et al., "The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms", Scientific Data (SDATA), Nature Research, September 2021.
- S. Zanoli, et al., "An Event-Based System for Low-Power ECG QRS Detection", Proc. of DATE 2020.
- G. Surrel, et al., "Event-Triggered Sensing for High-Quality and Low-Power Cardiovascular Monitoring Systems," IEEE Design & Test (D&T), IEEE Press, October 2019.

Key References and Bibliography (3/3)

E2CNN, Self-Awareness and Federated/Distributed Learning on edge AI wearables

- S. Baghersalimi, T. Teijeiro, D. Atienza, A. Aminifar, "*Real-Time Federated Learning for Epileptic Seizure Detection*", IEEE Journal of Biomedical and Health Informatics (J-BHI), August 2021.
- Ponzina, Flavio, et al. "E2CNNs: Ensembles of Convolutional Neural Networks to Improve Robustness Against Memory Errors in Edge-Computing Devices", IEEE Transactions on Computers, August 2021.
- Ponzina, Flavio, et al. "A Flexible In-Memory Computing Architecture for Heterogeneously Quantized CNNs", Prof. of ISVLSI. 2021.
- F. Forooghifar, A. Aminifar, D. Atienza, "*Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness from Edge to Cloud*", IEEE Transactions on Biomedical Circuits and Systems (TBioCAS), December 2019.
- F. Forooghifar, A. Aminifar, L. Cammoun, I. Wisniewski, C. Ciumas, P. Ryvlin, D. Atienza, "A Self-Aware Epilepsy Monitoring System for Detection of Seizures in Real Time", Elsevier Mobile Networks and Applications (MONET), August 2019. Link: <u>https://rdcu.be/bN1Bo</u>
- L. Duch, P. Garcia, S. Ganapathy, A. Burg, D. Atienza, "*Energy vs. Reliability Trade-offs Exploration in Biomedical Ultra-Low Power Devices*", Proc. DATE, 2016.
- M. Sabry, D. Atienza, F. Catthoor, "OCEAN: An Optimized HW/SW Reliability Mitigation Approach for Scratchpad Memories in Real-Time SoCs", ACM TECS, 2014.
- G. Karakonstantis, M. Sabry, D. Atienza, A. Burg, "A Quality-Scalable Spectral Analysis System for Energy Efficient Health Monitoring", Proc. of DATE, 2014.

Dr. Jose Miranda (ESL-EPFL)

The Edge: How real is the sixth-sense?

The Edge: How real is the sixth-sense?

• From sensing (VR) to sense (Mixed Reality):

- Head tracking: 4 visible light camera
- Eye tracking: 2 IT camera
- Depth sensors
- IMUs
- uPhones, speakers: VAD, KWS
- Real-time environment mesh
- Ability to identify and differentiate between objects

https://www.youtube.com/watch?v=FZhbJZEgKQ4 (55:07 - 57:00)

What about battery?