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▪ IoT market constantly growing (20B devices by 2025)

▪ Artificial Intelligence (AI) and Machine Learning (ML) 
used for data analytics and classification

▪ Sustainable? Expected increase in energy 
consumption by 3x in 2040 in current trends [IDC’22]

1) Less data transmitted over energy-hungry comm. links

2) Faster response = Less latency
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How to increase IoT 

efficiency? Edge AI systems

But adaptive (domain-specific 

and fast to build: co-design!)
3) Increased system knowledge (e.g., medical systems)
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IoT/AI Market:             

$76 billion by 2028
(TIRIAS RESEARCH)

20% Offload to Edge

AI at the Edge: $15 

billion

(savings of 800 MW)
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▪From sensing to sense:
▪ What is a sensor?
▪ How do we integrate 

advanced computational 
approaches (AI, ML, DL)?

▪ How do we make the sensors 
context-aware?

▪ How do we achieve a truly 
responsive to real-time 
environments?

▪ How do we personalize 
sensing?

▪ How do we assure 
interoperability?

https://www.frontiersin.org/journals/nanotechnology/articles/10.3389/fnano.2024.1434014/full
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Minimize system energy…

Medical IoT applications include clear 

phases for edge AI systems design
State-of-the-art
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IoT/AI applic. characteristics are key

to design the final edge AI system!

▪High accuracy achieved through:
▪ Large models

▪ Complex connections

▪ Ensembles of CNN models

Software + Hardware Optimizations

Efforts to use AI/ML on IoT nodes: 

edge AI systems 

Voltage and Freq scalingComputation Acceleration

Operations (G-Ops)
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Warning!! 

Usually, although this decision highly depends on the platform, for high-bandwidth applications 

the optimal frequency is determined by first selecting the lowest voltage that enables a 

frequency at which the system can meet its deadlines (i.e. maintaining a uniform frequency)

Real application example 12-Lead Heart Beat Classifier:
When choosing the right point we can save up to 58% 

of the total energy consumption!

Sometimes we can reduce 

energy by playing with 

both voltage and 

frequency of the system



Ack.: Mark Papermaster: “Advancing EDA Through the Power of AI and High-performance Computing”, DAC59 Keynote, 2022

General 

purpose CPU GPU

Domain 
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Hardware accelerators

• ASIC

• Process-in-memory (PIM)

• Spatial accelerator

• Systolic array

• FPGA

• Coarse Grained Reconfig. 

Arrays (CGRA)

• Vector machine

• Manycore

• GPU

Energy 

efficiency

ASIC

Systolic

PIM
CGRA

FPGA

DSP

Vector

GPU

Multicore

CPU

Application 

specific

General 

purpose

GP data 

parallelization

Domain 

specific

Recent focus 

on hardware 

specialization 

for edge AI
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B. Keller et al., "A 17–95.6 TOPS/W Deep Learning Inference Accelerator with Per-Vector Scaled 4-bit Quantization for 

Transformers in 5nm," 2022 IEEE VLSI Technology and Circuits, Honolulu, HI, USA, 2022, pp. 16-17.

It provides energy-efficient inference with transformers (BERT):           

95.6 TOPS/W – 1711 inferences/s/W – 0.7% Accuracy loss

But too high power for Medical edge AI systems…         

(Nvidia statement: “just a few Watts”)
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Need for domain-specific knowledge, technology alone does not work!



▪ RISC-V Cluster

▪ SNE – Spiking NN accelerator

▪ CUTIE – Ternary Neural 
Network

▪ > 1 PetaOps/s/W for 
Transformers

M. Scherer et al., "A 1036 TOp/s/W, 12.2 mW, 2.72 

μJ/Inference All Digital TNN Accelerator in 22 nm FDX 

Technology for TinyML Applications," 2022 IEEE COOL 

CHIPS), 2022

Still too high power for edge AI in medical 

IoT, it does not use domain-knowledge 

(medical system co-design needed!) 
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Source: https://www.enchargeai.com/technology
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J. Klein with IBM: ““ALPINE: Analog In-Memory Acceleration with Tight 

Processor Integration for Deep Learning”, IEEE TC, 2022: 

40% more energy efficient for complex NNs! Challenge: system-level interface!



Navion: Visual-Inertial Odometry (VIO) Accelerator

24mW at 65nm BioWolf: Brain-Computer Interface Platform

6.3mW providing 38hrs with 65mAh battery 

Victor Kartsch et al. TBioCAS’19Amr Suleiman et al. JSSC’19
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Architectures for 

conventional ML:

DNN, CNN, RNN

Efficiency 

Plateau 

reached!

B. Peccerillo, et. al. , “A survey on hardware accelerators: Taxonomy, trends, challenges, 

and perspectives,” Journal of Systems Architecture, vol. 129, p. 102561, 2022.

“Application” 

(Kernel) specific

14

Need for 

heterogeneous 

edge AI arch. in 

medical domain!

New trend: Simple core and different domain-specific accelerators together                             

(with system codesign = need for open and fast system exploration frameworks!)



https://www.esp.cs.columbia.edu/

https://www.dolphin-design.fr/chameleon-mcu-subsystem/

https://x-heep.epfl.ch/
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Open edge AI hardware framework for AI accelerators
with IP/royalty-free designs!

X-HEEP PROVIDES THE BASIC 

BLOCKS, AND WE CAN MAKE 

THE RESEARCH AROUND IT

This model encourages reutilization, long-term life, and 
collaboration between companies and academic institutions

Interrupt

Debug

Periphs

RISC-V

CPU

MEM
Your 

accelerators

Your

memories

Your

peripherals

NEW IP BLOCKS 

AND 

EXTENSIONS HERE!

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-

chip/x-heep/

Davide P. Schiavone, et al. "X-HEEP: An Open-Source, Configurable and Extendible RISC-V Microcontroller.“, RISC-V Annual Conference – Europe (2023). 16

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/


Accelerators

Main Memory / IMC

BUS

Core 0

Power Management Unit

Synchronizer

CGRA

DMA ADC

Bank0 Bank1 Bank2 Bank3

Bank4 Bank5 Bank6 Bank7

▪ Single-core architecture
▪ Control of accelerators flow (parallel execution)

▪ Independent memory banks
▪ Switch-off unnecessary banks 

▪ Coarse-Grained reconfigurable accelerator 
(CGRA) and in-memory computing (IMC)
▪ CGRA: compute-intense kernels (irregular flow)

▪ IMC: Simple ML ops with regular comp. flow

▪ Power Management Unit
▪ Voltage/frequency over-scaling

▪ ADC (event-based adaptive sampling)

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/ 17

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/


▪ CPU: Core-V RISC-V [1]

▪ Ibex

▪ Bus: AMBA AXI interfaces

▪ Memory: 8 banks, 256KB total

▪ ASIC implementation, 65nm TSMC
▪ Area: 6mm2

▪ Frequency:  32KHz/ 470MHz
▪ Power:   27.7mW@170MHz, 0.8V

48.1mW@470MHz, 1.2V

▪ Extensions enable ACCELERATORS:
1. Coarse-Grained Reconfig. Array (CGRA) 
2. In-memory (bit-line) computing

RAM1 RAM2 RAM3

RAM4 RAM5 RAM6 RAM7

CPU

CGRA
Bit-line 
comp.

PERIPH

ALWAYS-ON

2
m
m

3mm

[1] OpenHW group github: https://github.com/openhwgroup

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/
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Complete design done in 5 months (6 people)

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/


CGRA

▪ 2D Mesh of ALUS
▪ Spatio-temporal                      

kernel mapping

▪ 16 reconfig. cells

▪ 4 indep. columns

1. Synchronizer and Controller
▪ orchestrates execution

2. Datapath
▪ ALUs and register files

3. DMA port per column
▪ input/output to/from memory

4. Context/Kernel memory (2KB)
▪ stores CGRA configurations

0

0.1

0.2

0.3

0.4

Area (mm2)

▪ Datapath occupies 

>80% of area

Datapath

Control path

Loris Duch, Soumya Basu, Rubén Braojos, Giovanni Ansaloni, Laura Pozzi, David Atienza, "HEAL-WEAR: An Ultra-Low Power Heterogeneous System for Bio-Signal 

Analysis" IEEE Transactions on Circuits and Systems: Part I (TCAS-I), September 2017. 
19
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→ Shift, add, negation implement MAC
▪ 2.2GHz

▪ 64KB SRAM

▪ 28nm TSMC

16-bits word

Read Write IMC

376pJ 414pJ 381pJ

Energy

26%

67%

7%

Area: 1240 µm²

Shift and 

negation

SRAM 

cells

Rest of 

bitline

logic

Rios, Marco, et al. "Bit-Line Computing for CNN Accelerators Co-Design in Edge AI Inference.”

IEEE Transactions on Emerging Topics in Computing (2023).
20

IMC operations cost slightly more 

than memory read operations

But 3x performance gain 

for convolutional layers!

BLADE is an in-SRAM computing architecture that utilizes local word-line 

groups to perform computations at a frequency 2.8x higher than state-of-

the-art in-SRAM computing architectures. 



▪ Energy consumption: competitive vs. systems in newer tech.

ECG Heartbeat Classifier EEG Seizure Detection CNN
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Competitive and flexible Open-Source Edge AI systems for 

medical domain! So, what’s next? Use in medical applications!

But a new iteration of HW-SW co-design with learned lessons: 

evolution step in our neuro-inspired medical edge AI systems!



Heepatia (16nm)

Heepnosis (22nm)

▪Q4, 2024
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Choosing between NMC vs. IMC 

computing is a key research topic 

for different edge AI domains! 

Our CGRA accel. has “evolved”

IMC has become            

near-mem. comput. (NMC)



Main features:Main features:

⚫ 4x2 array of RCs with 

torus connection

⚫ RCs synchronized per 

column (common PC)

Main features:

⚫ 4x2 array of Rcs with 

torus connection

⚫ RCs synchronized per 

column (common PC)

⚫ 3 VWRs per column

⚫ 1 Scalar Register File 

(SRF) per column

⚫ 3 Specialized slots 

(LSU, LCU, MXCU)

⚫ Shared scratchpad 

memory (SPM)

Main features:

⚫ 4x2 array of RCs with 

torus connection

⚫ RCs synchronized per 

column (common PC)

⚫ 3 VWRs per column

⚫ 1 Scalar Register File 

(SRF) per column

Main features:

⚫ 4x2 array of RCs with 

torus connection

⚫ RCs synchronized per 

column (common PC)

⚫ 3 VWRs per column

⚫ 1 Scalar Register File 

(SRF) per column

⚫ 3 Specialized slots 

(LSU, LCU, MXCU)

Benoıt. Denkinger et al., DAC 2022 and TC 2023 23

▪ Wider and more efficient memory hierarchy
▪ Load Store Unit (LSU)
▪ Loop Control Unit (LCU)
▪ MultipleXer-Control Unit (MXCU)

3x speed-up (60% less power) for transformers use 

in medical edge AI applications 



24

Deeply Heterogeneous sensing 
systems

Towards long term monitoring for the 
medical domain cyber-physical systems



SW

MW

HW

Optimization 

impact on 

performance

Lightweight 

ML (retraining)

Specialized 

hardware

Lightweight/Tiny ML 

(retraining)
ML

ML on 

specialized HW

Performance

Power savings

Layers of 

abstraction

Research 

direction

ML Deployment Domain-Specific Exploration

Tiny ML on domain-

specific HW

Efficient 

(collaborative) 

use of resources

Architectural 

design

Contribution

Key idea: Iterative changes of HW & SW edge AI system 

(as our evolution as biological systems took place!) Deployment
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1. Neurons are idle most of the time (no power consumed)

2. Neurons react only to stimulations (small part active)

3. Neurons integrate storage with processing

4. Neurons are configurable

Design of medical edge AI systems based on its unique 

domain-specific properties and multiple accelerators
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http://neuroscape.ucsf.edu/glassbrain

▪ Brain “embedded” computing features:

▪ Size: 4-100 µm neurons, 1.3-1.5 dm3

▪ Approx. 80B Neurons, 100 Trillion Synapses

▪ 20W average (>10,000 TFLOPS)



What are the ECG’s temporal properties ?

Time-frequency analysis of the ECG

ECG temporal 

properties:

▪ High frequencies

▪ Low frequencies

▪ Changing in time

Different frequencies 

localized in time

Uniform sampling 

is sub-optimal
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And if representation changes: 

sparse signal = Few events!

G. Surrel, et al., “Online Obstructive Sleep Apnea Detection on Wearable Sensors”, IEEE Transactions on Biomedical Circuits and Systems (TBioCAS), May 2018. 



µController configuring the 

T-ADC sampling

Sampling occurs (voltage-based)

Voltage to digitize

Analog-to-Digital conversion

Digital data transmission

Level-crossing strategy

Useful sampling driven by

biosignal’s properties + 

pathology: dynamically tuned

Threshold 1

Threshold 2

Threshold 3

Threshold 4

Threshold 5

28
G. Surrel et al., “Event-Triggered Sensing for High-Quality and Low-Power Cardiovascular Monitoring Systems”, IEEE D&T 2019 



Detailed 

reconstruction
Coarse reconstruction Detailed

reconstruction

Coarse 

reconstruction

Extremely low average sampling 

frequency (from 360 Hz to < 20 Hz) 

Pathology F1-score detection: 99.73% 

vs. 99.79% with uniform sampling

360 Hz

S. Zanoli, Flavio Ponzina, Tomas Teijeiro, Alexandre Levisse, David Atienza, “An Error-Based Approximation Sensing Circuit for Event-Triggered Low-Power 

Wearable Sensors”, IEEE JETCAS, June 2023. 29



Extra challenges than our brain in edge AI: Epilepsy monitoring

1. Sparse events (few / month): Accurate monitoring but long-term

2. Real-time and personalized: Not only inference, but training too!

3. User experience

Social stigma: Patients refuse to wear EEG caps

Need for high sensing accuracy with 

suboptimal positions of edge AI systems!

30



Data collection unit

Wearables

Observe

Level1 
machine learning

(1)

Cloud

Level3
 machine learning

(3)

Observe

Level2
 machine learning

(2)

▪ Edge AI wearables process biosignals or ask for help
to the Cloud when (unknown) events are detected
▪ Healthy ECG or EEG are easy to detect

But how to learn                      

without sharing our data?

F. Forooghifar, Amir Aminifar, David Atienza, “Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness from Edge to Cloud”, IEEE Transactions on 

Biomedical Circuits and Systems (TBioCAS), December 2019 31



▪Components
▪ ML model:

▪ Data:  

Status Quo
(data sharing)

Privacy preserving
(NO original data shared)

Adaptation/training in Edge AI systems is key: FL to the rescue,

particularly in medical devices, as data is very sensitive! 

32



Energy-Efficient 

Edge AI

HW-SW Co-Design Methodology

HW ResourcesSW Optimization

QuantizationE2CNNML/CNN

Memory - BLADE

IMC accelerator

Single-Core 

low-power platform

III

IV

III

• Higher Accuracy

• Higher Error Resiliency

• Low-bitwidth operands

More aggressive 

power-saving 

strategies

Faster arithmetic

Less memory accesses

F. Ponzina, Simone Machetti, Marco Rios, Benoît W. Denkinger, Alexandre. Levisse, Giovanni Ansaloni, Miguel Peon-Quiros, David Atienza, 

“A hardware/software co-design vision for deep learning at the edge”, IEEE Micro Magazine, November 2022 33



CNN 

Replication

Ensemble

Deployment

CNN 

Compression

CNN 

Replication

E2CNN

Deployment

State-of-the-Art AI Ensembling

E2CNN Methodology

▪ Designed to be deployed in EdgeAI systems
▪ Ensembles of AI can significantly decrease 

workload and memory requirements

▪ How to build E2CNN
▪ Be N the desired number of instances forming the 

ensemble (N=4 in the example)

▪ Before training, compress the initial CNN via filter 
pruning by a factor N

▪ Replicate the obtained structure N times

▪ Train each CNN independently

1. Reduced computation for edge AI

2. Low memory use for final AI/ML, 

benefit from multiple combined models!

Flavio Ponzina, Miguel Peon, Andreas Burg and David Atienza, “E2CNNs: Ensembles of Convolutional Neural Networks to Improve 

Robustness Against Memory Errors in Edge-Computing Devices”, IEEE Transactions on Computers, August 2021 34



How to train the E2CNN design

▪ Train each CNN structure 
independently on target dataset

▪ Use a (different) random weights 
initialization for each CNN structure

How to run inference with E2CNN 

▪ Feed each instance/wearable with the 
target input data to be classified

▪ Average the individual output 
predictions to get E2CNN output

Training Set

Pruned CNN training 4 CNNs with same structure, 

but different weights

Testing Set

Output prob. predictions

E2CNN prediction

Averaging

35



• Multipliers: 8 bits

• Multiplicands: 16 bits

Uniform 
Quantization

• Layer-based quantization

• Target: multipliers

• 2 ≤ N ≤ 8 quant. bits

Multipliers 
Optimization

• Filter-based Optimization

• Redundant bits removal

Filter-level 
Optimization

• Layer-based quantization

• Target: multiplicands

• N=8 or N=16 quant. bits

Multiplicands 
Optimization

a)

b)

c)

d)

▪ Heterogeneous per-layer quantization
▪ Applied on top of a uniformly quantized baseline (a)

▪ Accuracy-driven
▪ Quantization in steps (b) and (d) constrained by a user-

defined accuracy level (e.g., medical application)

▪ Custom bitwidths

▪ Filter-level optimization
▪ Remove convolutional filters if containing only 0s weights

▪ No impact on accuracy, but significant MACs reduction

36

Medical system co-optimization calls for exploration of 

different types of accelerators: heterogeneous edge AI 

architectures! 
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CNN + Uniform Quant. E2CNN + Uniform Quant. E2CNN + Heterogeneous Quant.

Markers correspond to different approx. layers used to improve energy efficiency

+40%

+30%

+35%

+55% +34%

▪ Co-design enables competitive detection of epileptic seizures at minimal energy

▪ 80% accuracy on average with best E2CNN models of AI/ML instances

▪ Energy savings up to 55% at system level, without any relevant accuracy drop
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Some of the ESL gadgets

building an smarter edge much faster  



Sensors:
• EEG: 

• 24-bits

• 3 channels 

• Soft-dry electrodes

• Accelerometer (3-axial) /Gyroscope

Interfaces:
• Bluetooth 4.2

• USB 2.0

Processing – Medical Edge AI (3rd Gen.): 
• HEEPocrates – Ultra-low power edge AI

• Onboard memory: 64 MB (up to 7 days of 

recording of EEG signals)

Battery powered: up to 96h monitoring

e-Glass first prototype.

D. Sopic, A. Aminifar, and D. Atienza, “e-Glass: A Wearable System for Real-Time Detection of Epileptic Seizures,” in 2018

IEEE International Symposium on Circuits and Systems (ISCAS). Florence, Italy: IEEE, may 2018, pp. 1–5.

Comparison: 24 vs 4 electrodes

39

Glasses embodiment minimizes social stigma

(new: EpiPhone - bone conducting headset)

EpiPhone



Spontaneous EEG

Correl. r = 0.85

Power Spectrum
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e-Glass vs BIOPAC (commercial 
EEG recording equipment)
• Deep learning filter per person

e-Glass and (expensive) BIOPAC show 

high correlation

40
David Atienza (ESL-EPFL)
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Are our sensing 

medical technology 

ready to take such 

hetereogeneous 

challenge?

The sensing task is becoming 
inter and multi modality



▪Plug&Play your edge AI devices as you go to work together

eGlass EpiPhone

42

Medge AI devices are possible (but not there yet).  See more 

details here: https://www.epfl.ch/labs/esl/research/smart-

wearables/versasens/

https://www.epfl.ch/labs/esl/research/smart-wearables/versasens/


▪Open-source, easily extensible

▪Multi-location 
sensing and                                                                             
processing

Wrist: ECG + EMG config.

EEG + ECG + EDA: Stress monit. config.

ECG + EDA + Motion: Cough detection config.

43

Edge AI for knee monitoring, see www.sensemodi.com for more details

http://www.sensemodi.com/
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▪New domain-specific edge AI systems: follow the brain!

▪ Not just Von Neumann, evolution is needed!

▪Democratizing edge AI accel.-based systems co-design

▪ Use of application characteristics: analog and digital features

▪ Accelerator set (and architecture) keeps evolving

▪ Use of FL for efficient edge AI training 

▪Next-frontier: 

▪ Mapping more efficiently AI-based medical applications (not C, but Pytorch…)

▪ More efficient on-device learning for large AI models at the edge



Questions? 
jose.mirandacalero@epfl.ch

https://www.epfl.ch/labs/esl/research/
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▪ Epileptic seizure and ECG monitoring and detection with edge AI wearable devices
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BONUS

Dr. Jose Miranda (ESL-EPFL)
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Can this thing 
“sense”?…
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https://www.youtube.com/watch?v=FZhbJZEgKQ4

(55:07 – 57:00)

▪ From sensing (VR) to sense (Mixed Reality):
▪ Head tracking: 4 visible light camera
▪ Eye tracking: 2 IT camera
▪ Depth sensors
▪ IMUs
▪ uPhones, speakers: VAD, KWS
▪ Real-time environment mesh
▪ Ability to identify and differentiate between objects

What about battery?

https://www.youtube.com/watch?v=FZhbJZEgKQ4

