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1. Introduction



Who we are 
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The University of Sassari (UNISS)
was founded in 1558:
• over 10.000 students
• 34 bachelor courses
• 28 master courses
• 10 PhD programs

The University of Cagliari (UNICA)
was founded in 1620:
• about 25.000 students
• 47 bachelor courses
• 38 master courses
• 16 PhD programs



Who we are

Francesco Ratto is an
Assistant Professor at
UNICA.

Federico Manca is a
PhD Student at UNICA.

Claudio Rubattu is an
Assistant Professor at
UNISS.

Adaptive CNN execution on edge FPGAs - CPS24, Alghero (Italy) 6



MYRTUS approach

The MYRTUS
consortium comprises 8
countries and 14
partners, and brings
together different types
of competencies from
low-level architectural
details definition to
software management
strategies.

MYRTUS has received
funding from the
European Commission
for ~5,6M €.
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Activities in MYRTUS 

Multi-dataflow Composer tool extension: 
support for approximate computing and 

CNN deployment from ONNX
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2. Model inference on 
reconfigurable edge devices



Reconfigurable architectures
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High-level Synthesis

int add(int a, int b){
 return a+b;
}

module add (
 input   ap_start;
 output   ap_done;
 output   ap_idle;
 output   ap_ready;
 input  [31:0] a;
 input  [31:0] b;
 output  [31:0] 
ap_return;
);
assign ap_done = ap_start;
assign ap_idle = 1'b1;
assign ap_ready = ap_start;
assign ap_return = (b + a);
endmodule //add

High-level spec.
(e.g. C, C++…)

HDL spec.
(Verilog or VHDL)

Bitstream

HLS compilation

FPGA backend
(Logic Synthesis + Place&Route)
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Architectures for CNN inference on FPGAs

• A single processing
engine, usually in the
form of a systolic array
[Cnp, FPDNN,
NEURAGHE, AMD-DPU].

• a streaming/dataflow
architecture, consisting
of one processing engine
per network layer [FINN,
HLS4ml, Ratto].

• a vector processor with
instructions specific to
accelerating the
primitives' operations of
convolution [Cococcioni,
Garofalo].

Adaptive CNN execution on edge FPGAs - CPS24, Alghero (Italy) 12

Programmability Specialization



3. Model training for 
reconfigurable edge devices



Convolutional Neural Networks (CNN)

Input Features maps Flattened array Output

Convolution & ReLU
layer

Pooling
layer

Flatten Fully Connected
layer
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Feature extraction Classification
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Reducing CNN Complexity: Approximation

Floating point Fixed point

Approximate computing trades off computation quality with effort expended [Mittal]

Mantissa Exponent
Decimal
Representation

S Exponent Mantissa

IEEE 754 float

1 bit 8 bits 23 bits

010110
Integer bits Fractional bits



Reducing CNN Complexity: Quantization

Quantization is the process of mapping continuous infinite values to a
smaller set of discrete finite values.

The former are represented by floating-point values, the latter by fixed-point
values:
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Quantization is particularly relevant in applications like NNs that have
demonstrated remarkable resilience to errors [Hubara].



Reducing CNN Complexity: Training

Quantization-Aware Training (QAT):
• achieves higher accuracy;
• It uses quantized data in the

forward pass and float in the
backward pass [Gholami];

Post-Training Quantization (PTQ): 
• It is faster and simpler than QAT;
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Reducing CNN Complexity: QAT libraries

Quantization-Aware Training (QAT):
• achieves higher accuracy
• It uses quantized data in the

forward pass and float in the
backward pass
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APIFromLibrary
PytorchXilinxBrevitas
Keras - TFLarqLarq
Keras - TFGoogleQKeras



Exporting a CNN: the ONNX format
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Exporting a CNN: the QONNX format

QONNX (Quantized ONNX) introduces
new custom operators for quantization
to represent arbitrary-precision uniform
quantization in ONNX [Qonnx]:
• Quant
• BipolarQuant
• Trunc
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How to open the notebook

# Open the terminal and browse to the budva2024 folder:
cd Tutorial_Myrtus/ #(VM Only)
cd budva_2024

# Activate the virtual environment:
conda activate myenv

# Launch the interactive notebook:
jupyter notebook
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4. MYRTUS Toolchain for CNN 
Inference on FPGAs



From a CNN to a Streaming Architecture 
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QONNX 
model(s)
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From QONNX to a Streaming Specification

QONNX

Optimized QONNX

Streaming spec.

Frontend
Graph Optimization
(e.g. merge layers)

Backend
Generates files for HLS
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Streaming Architecture Synthesis: Actors
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Streaming Architecture Synthesis: Network
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Network topologies 
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Layers interface 
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Results: tiny CNN for MNIST classification
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CONV 64x3x3

MAXPOOL 2x2

CONV 64x3x3

MAXPOOL 2x2

FLATTEN

FULLY CONN.
10x3136

CLASS

Application: tiny CNN for
MNIST classification [Manca]

Board: AMD KRIA SoM

Demo



Results: Execution trade-offs
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Ax_Wy:
• x is the number of

bits used for
representing
activations;

• y is the number of
bits used for
representing
weights;



Towards Adaptivity: Multi-Dataflow Composer

Coprocessor Generator

• MDC is an open-source tool for designing and deploying CG reconfigurable
accelerators [Sau].
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Results: Execution trade-offs
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Ax_Wy:
• x is the number of

bits used for
representing
activations;

• y is the number of
bits used for
representing
weights;



Towards Adaptivity: MYRTUS Approach

Adaptive Multi-Profile System
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