
System on Chip design for
AI/ML ASICs

soclabs.org

Daniel Newbrook

John Darlington

David Flynn

about this session

• about: SoC Labs, … now and going forward

• flows: building an ASIC

• example flows: idea -> fpga -> custom ASIC

• technology: design references

• worked examples

• projects: from initial open call design contest

• get involved

Caveats/Perspective

• Most of the information in this talk is for someone who:
• Wants to build a hardware accelerator

• Wants to know more about how this fits within a system

• Coming from someone who is a System on Chip designer working
with the above people

• This is mostly an overview but please see me or contact us if you
want more information or to get involved

about this session

• about: SoC Labs, … now and going forward

• flows: building an ASIC

• example flows: idea -> fpga -> custom ASIC

• technology: design references

• worked examples

• projects: from initial open call design contest

• get involved

about SoC Labs

global academic community for System On Chip using arm architecture

• innovative ways to share, experience, knowledge and design re-use

• raise skill levels and electronic design practice within academia

• utilise both open and licensed IP to maximise research impact

• expand number of academics/institutions that produce SoCs

• improve academic output, more academic SoC designs in tier 1 publications

supported by arm, EDA vendors and Semiconductor Education Alliance

6 © 2024 Arm

Experience in the industry

30+

Industry leaders and high-growth
start-ups; chip companies and OEMs

1000+
Technology partners

Arm-based chips shipped
to-date

280+bn

Arm IP delivered to academic
institutions up to Jan 2024

11472+

years

Worldwide

120+
Institutions and growing

AAA offers our widest range of IP and tools:

• A membership model with access to an IP package on an ongoing basis via a
standard membership agreement

• Free to join and has no licensing or royalty fees

• for research, education and training purposes

• Visit arm.com/academicaccess

Improve academic design talent by working on real world System on Chip solutions and
challenges

Accelerate time to results and providing the opportunity to build research around real-
world commercial IP

Make the path to impact less challenging by using Arm IP, the world's largest ecosystem

http://arm.com/academicaccess

about SoC Labs

community centric hardware design

• greater innovation/impact/scale than working in isolation

• less effort on repeating basics, more on unique research IP

• together we solve problems and learn faster

• create ‘centers of gravity’ around reusable designs and assets, eg. NanoSoC

• benefit from shared resources especially verification efforts

• community projects motivate seasoned academics and new students

about - soclabs.org

arm IP + academic IP

global academic
community

mutual support
+ collaboration

projects help ease
SoC design, bridge
knowledge gaps

use industrial and open
source EDA tools

more academic die
in tier 1 publications

more researchers
and students with
proven skills

about this session

• about: SoC Labs, … now and going forward

• flows: building an ASIC

• example flows: idea -> fpga -> custom ASIC

• technology: design references

• worked examples

• projects: from initial open call design contest

• get involved

design flows

• SoC labs site contains information on different stages of design flows
including some example flows

• use of generic, high-level flow steps to get a sense for how to
achieve each task in the SoC design life cycle

• as well as some tool specific flows

• currently based around digital SoC design

• encouraging community to add additional knowledge

project structure/flow

• maintaining organised project is key to:
• a successful SoC scale project

• enables efficient reuse of technology IP,
scripts/environment setup, etc.

• Supports collaborative working

• mimics industry best practise

• project management can include
milestones that correspond to design
flow steps

FPGA prototyping flows

• similar structure for both
Pynq environment and bare-
metal fpga (like ARM MPS3)

• use either
• Xilinx PS/Pynq environment

• Or direct comms over UART

• design instantiated in pad-
ring-level “socket”

• IO ports mapped to board

“SOCKET”

Clock, Reset, Comms IO

PYNQ or
Comms

SoC Design
(within pad-ring)

I/O

FPGA prototyping flows

• design-flow material
actively in development
• Xilinx ZCU104 PYNQ
• Arm MPS3 systems
• Xilinx PYNQ Z2
• *NEW* Kria K26 targets

• ($250-350 Xilinx systems)

• server-based resource
example for shared
board targets

ASIC flows

• reference scripts available for
backend flow of nanoSoC using
• Cadence Genus + innovus
• Synopsys DC + ICC2
• Synopsys Fusion compiler (under

development)

• backend simulation environment
the same as behavioral/frontend

• test/development board mirrors
testbench environment

Synthesis

Floorplan

Power Plan

Placement

CTS

Routing

about this session

• about: SoC Labs, … now and going forward

• flows: building an ASIC

• example flows: idea -> fpga -> custom ASIC

• technology: design references

• worked examples

• projects: from initial open call design contest

• get involved

Accelerator Design Flow

IP Specification

• High level description
• Brief description of what your IP does

• Architectural decomposition
• Can you break you IP down into sub-

functions
• Are any of these sub-function already

available (e.g. FIFOs)
• Describe the function of each of these sub-

blocks

• Interfaces
• E.g. main data interface : AXI, configuration

interface: APB, clock(s), reset, interrupts etc.
• Include data widths, and if memory mapped

accelerator the address range needed

• Data throughput + buffering
• Do you need buffers, what ports are these

on, how deep are they
• What data rate do you need for your IP

• Data diagram
• How does data flow through your accelerator
• Parallel/single stream

• Flow chart/Pseudo-code

• Feature test scheme
• How are you going to verify your sub-blocks

and IP

Algorithmic Modelling

• Model your accelerator in a time-independent algorithmic model

• Allows flexibility and experimentation

• Gain familiarity with your IP

• Generate verification resources for you IP

• Not bound to hardware description languages
• Typically use things like MATLAB or Python – but use whatever you’re familiar with

• This can be a complete system view, or be broken down as per your IP
specification

Behavioral design

• Convert your algorithmic model to a hardware description language

• Design sub-block at a time and verify

• Consider carefully the interface between sub-blocks
• How does your IP handle backpressure

• Valid-ready handshake?

• Once sub-blocks are verified, connect and re-verify

System Integration

• Prior to this point, your accelerator may use only a basic handshake
data interface

• You will need a top-level bus interface
• AXI – High bandwidth
• AHB – Moderate bandwidth
• APB – Low bandwidth (also much simpler)

• This would also be where you add other components necessary for
the system
• Interrupts, reset, pins etc.

Physical Implementation -
FPGA

• Why?
• Simulators do not always pick up on un-

synthesizable constructs

• Test your design in real-world

• Testing/verification can be quicker at real world
speeds (versus simulation speed)

• Similarly software development can be easier
this way

Physical Implementation -
FPGA

• Zynq is a popular platform
• Processor system – Linux capable system, usually loaded with Pynq environment (a

python environment for Zynq FPGAs)
• Programmable logic – like traditional/bare-metal FPGA fabric to instantiate your

design
• AXI high bandwidth connections between PS and PL
• Arm provide IP for AXI to AHB and AHB to APB conversion

• Bare-metal FPGA
• Harder to evaluate individual IP’s but very good for system evaluation
• How to communicate between your IP and the outside world

• Uart -> AXI debug bridge https://github.com/ultraembedded/core_dbg_bridge
• JTAG -> AXI

https://github.com/ultraembedded/core_dbg_bridge

Physical Implementation -
ASIC

• Why would you do this for a single IP?
• If you are integrating into a system using a hierarchical approach

(i.e. your block will be instantiated as a macro)

• If you really care about your layout – the PPA of your IP can be
determined by how your IP is physically laid out

• If you want PPA for you single IP block – sometimes this can be
difficult to get from a full system implementation, particularly in
flat designs

Synthesis

Floorplan

Power Plan

Placement

CTS

Routing

Physical Implementation -
ASIC

• Basic flow
• Synthesis – turn your hardware description language to standard cells

• Floorplan – decide where things are placed in your design

• Power Plan – layout your power rails

• Placement – Place the standard cells (some timing based and/or
congestion-based optimization done here too)

• Clock tree synthesis – Makes a tree of all the clock connections in your
design and how. Optimisation of placement can be done here too

• Routing – Final routing of all of your signals

• Signoff – DRC checks, PPA checks, LVS, ERC

Synthesis

Floorplan

Power Plan

Placement

CTS

Routing

about this session

• about: SoC Labs, … now and going forward

• flows: building an ASIC

• example flows: idea -> fpga -> custom ASIC

• technology: design references

• worked examples

• projects: from initial open call design contest

• get involved

collaboration on research
evaluation demonstrators

• initial focus on microcontroller infrastructure to support generic
vehicles for research demonstrators:

Software management of

• Configuration

• Parameter trimming and tuning

• Mode control

• Stimulus and response scenarios

• Measurement and triggers for (external analysis)

• contribute to support quality publication
• Measured (versus predicted) power/energy, performance (operations/MHz) …

entry to research: simple
design, low cost fabrication

• AAA provides a wealth of commercially robust IP
• And some subsystems

• enhance ‘Reference designs’
• into reference system-on-chip realisations

• Cortex®-M0 System Design Kit (SDK) enhancement
• Git resources to augment Arm’s simulation environment

• Support implementation and validation

• okay for adding simple memory-mapped research
experiments and components

entry for custom compute:
‘nanosoc’ reference design

• single bus -> multi-master CMSDK;
efficient DMA for data delivery to
custom compute, multi-layer AMBA®
(AHB interconnect generation)

• Arm® Cortex M0

• Choice of DMA
• Low area PL230 for simple transactions

• DMA350 for complex transaction and AXI
stream support

nanoSoC + DMA-350

• Based around the nanoSoC system
• Using the DMA-350 in place of

PL230
• Allows for more complex DMA

transfers
• Also includes AXI stream port for

hardware in DMA loop
• Uses 2 AXI-AHB masters, allows

dedicated port for read and write
• nearly doubles transfer rate

A quick note: Chiplets

• We are starting to work on chiplet
designs

• University of Southampton developing
interposers

• Why Chiplets?:
• Reduced costs, System Flexibility,

Heterogenus integration, Improved PPA?

• Most academics don’t need 100 dies, so
maximizing re-use and minimizing cost

Interposer-Based Root of Trust: arXiv:2105.02917v1

A quick note: Chiplets

• Chiplet Challenges:
• Not a lot of already developed IP in the

open domain

• Not fully standardized yet (UCIE, BoW, CCI)

• Relatively high pin count per interface
Interposer-Based Root of Trust: arXiv:2105.02917v1

A quick note: Chiplets

• SoCLabs SRAM Chiplet:
• SRAM area is significant in ASICs
• Particularly for bigger SoC where MBs of cache

is needed
• SRAM chiplet with 1MB SRAM plus daisy

chaining to increase up to 16 MB

• Chiplet interface – Arm Thin Links
• Converts an AXI or AHB interface to an AXI

stream interface
• Includes full addressing and channel control

(size, burst, response etc.)

milliSoC

• Real time processor
(Cortex R class)

• Tightly coupled memory

• Host-chiplet with 2
chiplet interfaces for:
• Custom accelerator

• Daisy chain of add-ons

Request for Collaboration:
‘megasoc’

• Visibility from early soclabs
collaborators

• Configurable DMA controller
• (not in similar current Corstone

platforms)

• Accelerator validation
independently
• integration test

forming our shared
“roadmap”

• driven by collaborating partners’ needs within Arm AAA provision…

• Cortex-M CPU, controller class
• (picosoc ?) minimal infrastructure to host energy harvesting or mixed-signal
• nanosoc – Cortex-M0 CPU + DMA230 (enhanced option) AHB DMA
• (microsoc ?) CPU + AXI interconnect, wider memory, DMA350
• (millisoc ??) CPU/DMA + asynchronous bridge to DVFS capable subsystems

• PVT sensors

• Cortex-A CPU, virtual-memory Linux OS
• kilo-/mega-soc(!) – bridge from Zynq FPGA prototyping platform

lots more AAA IP to choose from…

about this session

• about: SoC Labs, … now and going forward

• flows: building an ASIC

• example flows: idea -> fpga -> custom ASIC

• technology: design references

• worked examples

• projects: from initial open call design contest

• get involved

Aside

• When implementating an AI/ML model you effectively have 3 choices
• Completely general

• Effectively a matrix multiplication engine, by tiling your matrices to fit the hardware you could
run any model on this

• Typically small area but requires continuous loading of tiles

• Fixed architecture
• Model architecture is fixed but weights can vary
• Larger area, only requires loading of weights at startup

• Fixed model
• Model architecture and weights fixed
• Slightly smaller area than fixed architecture (as tie high or tie low cells used instead of

registers) no loading of weights

Example 1: Gemm Engine

• General Matrix Multiply: 𝑪 ← 𝛼𝑨𝑩 + 𝛽𝑪

• 4x4 matrix multiplication (fixed point)

• What am I trying to achieve?
• Verify in silicon – measure physical PPA

• Don’t need to run a full/large model

• 32 bit AHB bus – 16 bit words

• Model size: 10’s KiB

• Bandwidth: no real constraints

PE

AHB to
FIFOs

PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Example 1: Gemm Engine

• What are the system requirements?

• 32 bit AHB bus

• CPU for pre/post processing data

• DMA for data transfer

• 10’s KiB on chip SRAM

Example 2: Voice Keyword
detection

• CNN Model
• What am I trying to achieve?

• Verify in silicon – measure physical PPA
• Deploy with microphone

• Need to run full model
• 16 bit audio data
• Model size: 100 KiB
• Bandwidth:

• Data – 16 bit 44.1 kHz
• Model – 4 GBps (100 KiB x 44.1 kHz)

EFFICIENTNET-ABSOLUTE ZERO FOR CONTINUOUS SPEECH
KEYWORD SPOTTING arXiv:2012.15695v1

Example 2: Voice Keyword
detection

• What are the system
requirements?

• High bandwidth bus – AXI 64
bit @ 500 MHz

• 100 KiB storage (sram chiplet
useful here)

• Real-time operation
• Must complete before next audio

sample

Example 3: Vision Object
detection

• Deep learning model
• What am I trying to achieve?

• Verify in silicon – measure physical PPA
• Deploy with camera

• Need to run full model
• 224x224x3 Video data (150 KiB/frame)
• Model size: 42 MiB
• Bandwidth:

• Data – 28 Mbps (150 KiB @ 24fps)
• Model – 8 Gbps (42 MiB x 24 fps)

Deep Residual Learning for Image Recognition
arXiv:1512.03385v1

Example 3: Vision Object
detection

• What are the system
requirements?

• High bandwidth bus – AXI 64 bit
@ 1 GHz

• 42 MiB storage – SRAM Chiplet or
DDR

• Real-time operation
• Must complete before next video

sample

• Full OS?

about this session

• about: SoC Labs, … now and going forward

• flows: building an ASIC

• example flows: idea -> fpga -> custom ASIC

• technology: design references

• worked examples

• projects: from initial open call design contest

• get involved

2023/24 contest

• hardware Track:
• BlackBear: Reconfigurable AI for large image (Jen-Chien Chang, NCKU)

• DeepSoCFlow: Accelerate DNNs for Scientific Compute (Abarajithan
Gnaneswaran UCSC/Moratuwa)

• Real-Time Edge AI SoC: High-Speed Low Complexity Reconfigurable-Scalable
Architecture for DNNs (Sai Dinesh Y V, IITH)

• education Track:
• Hell Fire SoC: Configurable Systolic array processing (Srimanth Tenneti,

Cincinnati)

• Fast-kNN: Implementing a k-Nearest-Neighbour classifier (Epifanios Baikas,
University of Southampton)

Fast-kNN - education track

• PhD student – Epifanios Baikus

• began with little experience in
hardware design

• developed accelerator inside
nanoSoC reference environment
• No last-minute integration needed

• submitted for tape out on TSMC
65nm mini-ASIC shuttle

Hell fire SoC – education
track

• Independent project

• systolic array with 4x4
processing elements

• submitted for tapeout on TSMC
65nm mini-ASIC shuttle

• design includes nanoSoC with
DMA-350 instead of PL230

• also developed his own SoC
based on Arm Design Start IP

IITH – hardware track

• edge AI SoC for image processing

• previously taped out as standalone
NPU with FPGA

• SoC based on Arm’s Corstone 1000
subsystem (SSE-710) + DMA-350

• currently in backend flow for tape
out in May

• backend flow includes multiple
power and clock domains

NanoSoC
Tapeout

Process TSMC 65nm LP

Metal Scheme 9m 6x1z1u

Lib Corners ss_1.08V_125C
tt_1.2V_25C
ff_1.32V_-40C

Chip area 1x1.5mm (mini@SIC)

Instances 2x 8kB Register file
2x 16kB register file

IO Pads 38 total
16 GPIO

Clocks 1x System clock 1x SWD
clock

Max Frequency 240 MHz System Clock

Synthesis

Floorplan

Power Plan

Placement

CTS

Routing

DRC

LVS

Cadence: Genus

Cadence:
Innovus

MG: Calibre

• 2 Custom accelerators taped out with
nanosoc reference design (more on the
way)

• Both contestants from the 2023/24
contest in the education track

• Srimanth: Master student
• Hell Fire SoC – a systolic array

accelerator for AI/ML applications
• Fanis: Junior PhD student

• Fast-kNN – hardware
implementation of Euclidean
distance algorithm for kNN image
classification

NanoSoC Test-board:
Hardware

• Low-cost test board for showcase and
development on nanoSoC ASIC.

• Uses 2 RP2040 chips from Raspberry Pi (dual
core Arm® Cortex M0+)

• Enables support for SD card, screen, SWD
debugging, clock generation and power
monitoring

• USB-C power and interface to both RP2040s

NanoSoC Test-board:
Software

• Hell Fire Demo – IRIS dataset classification

1. RP2040 driver sends program file + all data and weights
for the neural network to nanosoc

2. Nanosoc computes the output of the neural network
using the hell fire accelerator

3. Nanosoc handshakes the output back to the RP2040

4. RP2040 displays result on screen

5. Loop back to 2 until all calculations are complete

6. Displays the average power consumption

• Fast-kNN Demo – Fashion MNIST classification

1. RP2040 loads all data from the SD card to RAM. Sends the
program file

2. RP2040 sends the unlabelled image and 10 labelled
images to nanosoc

3. Nanosoc runs a comparison of the images and
handshakes the values of the comparison to RP2040

4. RP2040 sends next 10 labelled images until all 100 have
been sent

5. Loop back to 2 until all unlabelled images are sent

6. Displays the results of the comparisons

about this session

• about: SoC Labs, … now and going forward

• flows: building an ASIC

• example flows: idea -> fpga -> custom ASIC

• technology: design references

• worked examples

• projects: from initial open call design contest

• get involved

it only works if we communication, share
and collaborate…

about SoC Labs

Chiplet Contest

• Full details here: https://soclabs.org/article/design-contest-chiplet-based-
soc-2025

• Announced this week at IEEE SOCC

• “contest for creation of an academic Chiplet based disaggregated SOC using
the ARM ecosystem.”

• SoC Labs will arrange for the winning design:
• funding toward die fabrication costs for custom chiplets
• fabrication of a custom interposer/package
• design support during the year
• subsidies for travel to the IEEE SOCC 2025 conference

https://soclabs.org/article/design-contest-chiplet-based-soc-2025
https://soclabs.org/article/design-contest-chiplet-based-soc-2025

contest: entry

community centric hardware design

• individual and institutional skills development and collaboration

• building SoC design capability, sharing knowledge and experience (together
we solve problems and learn faster)

• expand number of academics/institutions that produce SoCs

• no requirement for a novel solution

• reuse of existing design as important as creation of new design

• new application of a well know technique

• create shared resources especially verification efforts

• about the journey not the technology/IP

contest: sign up

simply sign up on soclabs.org
home page

add your project to a
chiplet via My
Contributions

?
develop project
concept, an
image and
summary

contest: project progress

simply add milestones at any
time, design flow steps can guide

add narrative describing your
activities, especially in the
education/collaboration track

Thank you for listening, questions?

we are here to help you on your journey

	intro
	Slide 1
	Slide 2: about this session
	Slide 3: Caveats/Perspective

	About Soclabs
	Slide 4: about this session
	Slide 5: about SoC Labs
	Slide 6
	Slide 7: about SoC Labs
	Slide 8: about - soclabs.org

	Flows
	Slide 9: about this session
	Slide 10: design flows
	Slide 11: project structure/flow
	Slide 12: FPGA prototyping flows
	Slide 13: FPGA prototyping flows
	Slide 14: ASIC flows

	Example Flows
	Slide 15: about this session
	Slide 16: Accelerator Design Flow
	Slide 17: IP Specification
	Slide 18: Algorithmic Modelling
	Slide 19: Behavioral design
	Slide 20: System Integration
	Slide 21: Physical Implementation - FPGA
	Slide 22: Physical Implementation - FPGA
	Slide 23: Physical Implementation - ASIC
	Slide 24: Physical Implementation - ASIC

	technology
	Slide 25: about this session
	Slide 26: collaboration on research evaluation demonstrators
	Slide 27: entry to research: simple design, low cost fabrication
	Slide 28: entry for custom compute: ‘nanosoc’ reference design
	Slide 29: nanoSoC + DMA-350
	Slide 30: A quick note: Chiplets
	Slide 31: A quick note: Chiplets
	Slide 32: A quick note: Chiplets
	Slide 33: milliSoC
	Slide 34: Request for Collaboration: ‘megasoc’
	Slide 35: forming our shared “roadmap”

	worked examples
	Slide 36: about this session
	Slide 37: Aside
	Slide 38: Example 1: Gemm Engine
	Slide 39: Example 1: Gemm Engine
	Slide 40: Example 2: Voice Keyword detection
	Slide 41: Example 2: Voice Keyword detection
	Slide 42: Example 3: Vision Object detection
	Slide 43: Example 3: Vision Object detection

	projects
	Slide 44: about this session
	Slide 45: 2023/24 contest
	Slide 46: Fast-kNN - education track
	Slide 47: Hell fire SoC – education track
	Slide 48: IITH – hardware track
	Slide 49: NanoSoC Tapeout
	Slide 50: NanoSoC Test-board: Hardware
	Slide 51: NanoSoC Test-board: Software

	get involved
	Slide 52: about this session
	Slide 53: about SoC Labs
	Slide 54: Chiplet Contest
	Slide 55: contest: entry
	Slide 56: contest: sign up
	Slide 57: contest: project progress
	Slide 58

