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Caveats/Perspective

• Most of the information in this talk is for someone who:
• Wants to build a hardware accelerator

• Wants to know more about how this fits within a system

• Coming from someone who is a System on Chip designer working 
with the above people

• This is mostly an overview but please see me or contact us if you 
want more information or to get involved
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about SoC Labs

global academic community for System On Chip using arm architecture

• innovative ways to share, experience, knowledge and design re-use

• raise skill levels and electronic design practice within academia

• utilise both open and licensed IP to maximise research impact

• expand number of academics/institutions that produce SoCs

• improve academic output, more academic SoC designs in tier 1 publications

supported by arm, EDA vendors and Semiconductor Education Alliance
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Experience in the industry

30+

Industry leaders and high-growth 
start-ups; chip companies and OEMs

1000+
Technology partners

Arm-based chips shipped  
to-date

280+bn

Arm IP delivered to academic 
institutions up to Jan 2024

11472+

years

Worldwide

120+
Institutions and growing

AAA offers our widest range of IP and tools:

• A membership model with access to an IP package on an ongoing basis via a 
standard membership agreement

• Free to join and has no licensing or royalty fees

• for research, education and training purposes

• Visit arm.com/academicaccess

Improve academic design talent by working on real world System on Chip solutions and 
challenges

Accelerate time to results and providing the opportunity to build research around real-
world commercial IP

Make the path to impact less challenging by using Arm IP, the world's largest ecosystem

http://arm.com/academicaccess


about SoC Labs

community centric hardware design

• greater innovation/impact/scale than working in isolation

• less effort on repeating basics, more on unique research IP

• together we solve problems and learn faster 

• create ‘centers of gravity’ around reusable designs and assets, eg. NanoSoC

• benefit from shared resources especially verification efforts

• community projects motivate seasoned academics and new students



about - soclabs.org

arm IP  + academic IP

global academic 
community

mutual support  
+ collaboration

projects  help ease 
SoC design, bridge 
knowledge gaps

use industrial and open 
source EDA tools

more academic die 
in tier 1 publications

more researchers 
and students with 
proven skills
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design flows

• SoC labs site contains information on different stages of design flows 
including some example flows

• use of generic, high-level flow steps to get a sense for how to 
achieve each task in the SoC design life cycle

• as well as some tool specific flows 

• currently based around digital SoC design

• encouraging community to add additional knowledge



project structure/flow

• maintaining organised project is key to:
• a successful SoC scale project

• enables efficient reuse of technology IP, 
scripts/environment setup, etc.

• Supports collaborative working

• mimics industry best practise 

• project management can include 
milestones that correspond to design 
flow steps



FPGA prototyping flows

• similar structure for both 
Pynq environment and bare-
metal fpga (like ARM MPS3)

• use either
•  Xilinx PS/Pynq environment

• Or direct comms over UART

• design instantiated in pad-
ring-level “socket”

• IO ports mapped to board

“SOCKET”

Clock, Reset, Comms IO

PYNQ or 
Comms

SoC Design
(within pad-ring)

I/O



FPGA prototyping flows

• design-flow material 
actively in development
• Xilinx ZCU104 PYNQ
• Arm MPS3 systems
• Xilinx PYNQ Z2
• *NEW* Kria K26 targets

• ($250-350 Xilinx systems)

• server-based resource 
example for shared 
board targets



ASIC flows

• reference scripts available for 
backend flow of nanoSoC using
• Cadence Genus + innovus
• Synopsys DC + ICC2
• Synopsys Fusion compiler (under 

development)

• backend simulation environment 
the same as behavioral/frontend

• test/development board mirrors 
testbench environment
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Accelerator Design Flow



IP Specification 

• High level description
• Brief description of what your IP does

• Architectural decomposition
• Can you break you IP down into sub-

functions
• Are any of these sub-function already 

available (e.g. FIFOs)
• Describe the function of each of these sub-

blocks

• Interfaces
• E.g. main data interface : AXI, configuration 

interface: APB, clock(s), reset, interrupts etc.
• Include data widths, and if memory mapped 

accelerator the address range needed

• Data throughput + buffering
• Do you need buffers, what ports are these 

on, how deep are they
• What data rate do you need for your IP

• Data diagram
• How does data flow through your accelerator
• Parallel/single stream

• Flow chart/Pseudo-code

• Feature test scheme
• How are you going to verify your sub-blocks 

and IP



Algorithmic Modelling

• Model your accelerator in a time-independent algorithmic model

• Allows flexibility and experimentation

• Gain familiarity with your IP

• Generate verification resources for you IP

• Not bound to hardware description languages
• Typically use things like MATLAB or Python – but use whatever you’re familiar with

• This can be a complete system view, or be broken down as per your IP 
specification 



Behavioral design

• Convert your algorithmic model to a hardware description language

• Design sub-block at a time and verify 

• Consider carefully the interface between sub-blocks 
• How does your IP handle backpressure

• Valid-ready handshake?

• Once sub-blocks are verified, connect and re-verify



System Integration

• Prior to this point, your accelerator may use only a basic handshake 
data interface

• You will need a top-level bus interface
• AXI – High bandwidth 
• AHB – Moderate bandwidth
• APB – Low bandwidth (also much simpler)

• This would also be where you add other components necessary for 
the system
• Interrupts, reset, pins etc.



Physical Implementation - 
FPGA

• Why?
• Simulators do not always pick up on un-

synthesizable constructs

• Test your design in real-world

• Testing/verification can be quicker at real world 
speeds (versus simulation speed)

• Similarly software development can be easier 
this way



Physical Implementation - 
FPGA

• Zynq is a popular platform
• Processor system – Linux capable system, usually loaded with Pynq environment (a 

python environment for Zynq FPGAs)
• Programmable logic – like traditional/bare-metal FPGA fabric to instantiate your 

design
• AXI high bandwidth connections between PS and PL
• Arm provide IP for AXI to AHB and AHB to APB conversion

• Bare-metal FPGA
• Harder to evaluate individual IP’s but very good for system evaluation
• How to communicate between your IP and the outside world

• Uart -> AXI debug bridge https://github.com/ultraembedded/core_dbg_bridge
• JTAG -> AXI

https://github.com/ultraembedded/core_dbg_bridge


Physical Implementation - 
ASIC

• Why would you do this for a single IP?
• If you are integrating into a system using a hierarchical approach 

(i.e. your block will be instantiated as a macro)

• If you really care about your layout – the PPA of your IP can be 
determined by how your IP is physically laid out

• If you want PPA for you single IP block – sometimes this can be 
difficult to get from a full system implementation, particularly in 
flat designs
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Floorplan

Power Plan

Placement

CTS

Routing



Physical Implementation - 
ASIC

• Basic flow
• Synthesis – turn your hardware description language to standard cells

• Floorplan – decide where things are placed in your design

• Power Plan – layout your power rails

• Placement – Place the standard cells (some timing based and/or 
congestion-based optimization done here too)

• Clock tree synthesis – Makes a tree of all the clock connections in your 
design and how. Optimisation of placement can be done here too

• Routing – Final routing of all of your signals

• Signoff – DRC checks, PPA checks, LVS, ERC

Synthesis

Floorplan

Power Plan

Placement

CTS

Routing
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collaboration on research 
evaluation demonstrators

• initial focus on microcontroller infrastructure to support generic 
vehicles for research demonstrators:

Software management of

• Configuration

• Parameter trimming and tuning

• Mode control

• Stimulus and response scenarios

• Measurement and triggers for (external analysis)

• contribute to support quality publication
• Measured (versus predicted) power/energy, performance (operations/MHz) …



entry to research: simple 
design, low cost fabrication

• AAA provides a wealth of commercially robust IP
• And some subsystems

• enhance ‘Reference designs’
• into reference system-on-chip realisations

• Cortex®-M0 System Design Kit (SDK) enhancement
• Git resources to augment Arm’s simulation environment

• Support implementation and validation

• okay for adding simple memory-mapped research 
experiments and components



entry for custom compute:
‘nanosoc’ reference design

• single bus -> multi-master CMSDK; 
efficient DMA for data delivery to 
custom compute, multi-layer AMBA® 
(AHB interconnect generation)

• Arm® Cortex M0

• Choice of DMA 
• Low area PL230 for simple transactions

• DMA350 for complex transaction and AXI 
stream support



nanoSoC + DMA-350

• Based around the nanoSoC system
• Using the DMA-350 in place of 

PL230
• Allows for more complex DMA 

transfers 
• Also includes AXI stream port for 

hardware in DMA loop
• Uses 2 AXI-AHB masters, allows 

dedicated port for read and write
• nearly doubles transfer rate



A quick note: Chiplets

• We are starting to work on chiplet 
designs

• University of Southampton developing 
interposers

• Why Chiplets?:
• Reduced costs, System Flexibility, 

Heterogenus integration, Improved PPA?

• Most academics don’t need 100 dies, so 
maximizing re-use and minimizing cost 

Interposer-Based Root of Trust: arXiv:2105.02917v1



A quick note: Chiplets

• Chiplet Challenges:
• Not a lot of already developed IP in the 

open domain

• Not fully standardized yet (UCIE, BoW, CCI)

• Relatively high pin count per interface 
Interposer-Based Root of Trust: arXiv:2105.02917v1



A quick note: Chiplets

• SoCLabs SRAM Chiplet:
• SRAM area is significant in ASICs
• Particularly for bigger SoC where MBs of cache 

is needed
• SRAM chiplet with 1MB SRAM plus daisy 

chaining to increase up to 16 MB

• Chiplet interface – Arm Thin Links
• Converts an AXI or AHB interface to an AXI 

stream interface
• Includes full addressing and channel control 

(size, burst, response etc.)



milliSoC

• Real time processor 
(Cortex R class) 

• Tightly coupled memory 

• Host-chiplet with 2 
chiplet interfaces for: 
• Custom accelerator

• Daisy chain of add-ons



Request for Collaboration: 
‘megasoc’

• Visibility from early soclabs 
collaborators

• Configurable DMA controller
• (not in similar current Corstone 

platforms)

• Accelerator validation 
independently
• integration test



forming our shared 
“roadmap”

• driven by collaborating partners’ needs within Arm AAA provision…

• Cortex-M CPU, controller class
• (picosoc ?) minimal infrastructure to host energy harvesting or mixed-signal
• nanosoc – Cortex-M0 CPU + DMA230 (enhanced option) AHB DMA
• (microsoc ?) CPU + AXI interconnect, wider memory, DMA350
• (millisoc ??) CPU/DMA + asynchronous bridge to DVFS capable subsystems

• PVT sensors

• Cortex-A CPU, virtual-memory Linux OS
• kilo-/mega-soc(!) – bridge from Zynq FPGA prototyping platform

lots more AAA IP to choose from…
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Aside 

• When implementating an AI/ML model you effectively have 3 choices
• Completely general

• Effectively a matrix multiplication engine, by tiling your matrices to fit the hardware you could 
run any model on this

• Typically small area but requires continuous loading of tiles

• Fixed architecture 
• Model architecture is fixed but weights can vary
• Larger area, only requires loading of weights at startup

• Fixed model 
• Model architecture and weights fixed
• Slightly smaller area than fixed architecture (as tie high or tie low cells used instead of 

registers) no loading of weights



Example 1: Gemm Engine

• General Matrix Multiply: 𝑪 ← 𝛼𝑨𝑩 + 𝛽𝑪

• 4x4 matrix multiplication (fixed point)

• What am I trying to achieve?
• Verify in silicon – measure physical PPA

• Don’t need to run a full/large model

• 32 bit AHB bus – 16 bit words

• Model size: 10’s KiB

• Bandwidth: no real constraints

PE

AHB to 
FIFOs

PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE



Example 1: Gemm Engine

• What are the system requirements?

• 32 bit AHB bus

• CPU for pre/post processing data

• DMA for data transfer

• 10’s KiB on chip SRAM



Example 2: Voice Keyword 
detection

• CNN Model
• What am I trying to achieve?

• Verify in silicon – measure physical PPA
• Deploy with microphone

• Need to run full model
• 16 bit audio data
• Model size: 100 KiB
• Bandwidth: 

• Data – 16 bit 44.1 kHz
• Model – 4 GBps (100 KiB x 44.1 kHz)

EFFICIENTNET-ABSOLUTE ZERO FOR CONTINUOUS SPEECH
KEYWORD SPOTTING arXiv:2012.15695v1



Example 2: Voice Keyword 
detection

• What are the system 
requirements?

• High bandwidth bus – AXI 64 
bit @ 500 MHz

• 100 KiB storage (sram chiplet 
useful here)

• Real-time operation
• Must complete before next audio 

sample



Example 3: Vision Object 
detection

• Deep learning model
• What am I trying to achieve?

• Verify in silicon – measure physical PPA
• Deploy with camera

• Need to run full model
• 224x224x3 Video data (150 KiB/frame)
• Model size: 42 MiB
• Bandwidth: 

• Data – 28 Mbps (150 KiB @ 24fps)
• Model – 8 Gbps (42 MiB x 24 fps)

Deep Residual Learning for Image Recognition 
arXiv:1512.03385v1



Example 3: Vision Object 
detection

• What are the system 
requirements?

• High bandwidth bus – AXI 64 bit 
@ 1 GHz

• 42 MiB storage – SRAM Chiplet or 
DDR

• Real-time operation
• Must complete before next video 

sample

• Full OS? 
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2023/24 contest

• hardware Track:
• BlackBear: Reconfigurable AI for large image (Jen-Chien Chang, NCKU)

• DeepSoCFlow: Accelerate DNNs for Scientific Compute (Abarajithan 
Gnaneswaran UCSC/Moratuwa)

• Real-Time Edge AI SoC: High-Speed Low Complexity Reconfigurable-Scalable 
Architecture for DNNs (Sai Dinesh Y V, IITH)

• education Track: 
• Hell Fire SoC: Configurable Systolic array processing (Srimanth Tenneti, 

Cincinnati)

• Fast-kNN: Implementing a k-Nearest-Neighbour classifier (Epifanios Baikas, 
University of Southampton)



Fast-kNN - education track

• PhD student – Epifanios Baikus

• began with little experience in 
hardware design

• developed accelerator inside 
nanoSoC reference environment
• No last-minute integration needed

• submitted for tape out on TSMC 
65nm mini-ASIC shuttle



Hell fire SoC – education 
track

• Independent project

• systolic array with 4x4 
processing elements

• submitted for tapeout on TSMC 
65nm mini-ASIC shuttle

• design includes nanoSoC with 
DMA-350 instead of PL230

• also developed his own SoC 
based on Arm Design Start IP



IITH – hardware track 

• edge AI SoC for image processing

• previously taped out as standalone 
NPU with FPGA

• SoC based on Arm’s Corstone 1000 
subsystem (SSE-710) + DMA-350

• currently in backend flow for tape 
out in May

• backend flow includes multiple 
power and clock domains



NanoSoC 
Tapeout

Process TSMC 65nm LP

Metal Scheme 9m 6x1z1u

Lib Corners ss_1.08V_125C
tt_1.2V_25C
ff_1.32V_-40C

Chip area 1x1.5mm (mini@SIC)

Instances 2x 8kB Register file
2x 16kB register file

IO Pads 38 total
16 GPIO

Clocks 1x System clock 1x SWD 
clock

Max Frequency 240 MHz System Clock

Synthesis

Floorplan

Power Plan

Placement

CTS

Routing

DRC

LVS

Cadence: Genus

Cadence: 
Innovus

MG: Calibre

• 2 Custom accelerators taped out with 
nanosoc reference design (more on the 
way)

• Both contestants from the 2023/24 
contest in the education track

• Srimanth: Master student
• Hell Fire SoC – a systolic array 

accelerator for AI/ML applications
• Fanis: Junior PhD student

• Fast-kNN – hardware 
implementation of Euclidean 
distance algorithm for kNN image 
classification



NanoSoC Test-board: 
Hardware

• Low-cost test board for showcase and 
development on nanoSoC ASIC.

• Uses 2 RP2040 chips from Raspberry Pi (dual 
core Arm® Cortex M0+)

• Enables support for SD card, screen, SWD 
debugging, clock generation and power 
monitoring

• USB-C power and interface to both RP2040s



NanoSoC Test-board: 
Software

• Hell Fire Demo – IRIS dataset classification

1. RP2040 driver sends program file + all data and weights 
for the neural network to nanosoc

2. Nanosoc computes the output of the neural network 
using the hell fire accelerator

3. Nanosoc handshakes the output back to the RP2040 

4. RP2040 displays result on screen

5. Loop back to 2 until all calculations are complete

6. Displays the average power consumption

• Fast-kNN Demo – Fashion MNIST classification

1. RP2040 loads all data from the SD card to RAM. Sends the 
program file 

2. RP2040 sends the unlabelled image and 10 labelled 
images to nanosoc

3. Nanosoc runs a comparison of the images and 
handshakes the values of the comparison to RP2040

4. RP2040 sends next 10 labelled images until all 100 have 
been sent

5. Loop back to 2 until all unlabelled images are sent

6. Displays the results of the comparisons
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it only works if we communication, share 
and collaborate…

about SoC Labs



Chiplet Contest

• Full details here: https://soclabs.org/article/design-contest-chiplet-based-
soc-2025

• Announced this week at IEEE SOCC

• “contest for creation of an academic Chiplet based disaggregated SOC using 
the ARM ecosystem.” 

• SoC Labs will arrange for the winning design:
• funding toward die fabrication costs for custom chiplets
• fabrication of a custom interposer/package
• design support during the year
• subsidies for travel to the IEEE SOCC 2025 conference 

https://soclabs.org/article/design-contest-chiplet-based-soc-2025
https://soclabs.org/article/design-contest-chiplet-based-soc-2025


contest: entry

community centric hardware design

• individual and institutional skills development and collaboration

• building SoC design capability, sharing knowledge and experience (together 
we solve problems and learn faster)

• expand number of academics/institutions that produce SoCs

• no requirement for a novel solution

• reuse of existing design as important as creation of new design

• new application of a well know technique  

• create shared resources especially verification efforts

• about the journey not the technology/IP



contest: sign up

simply sign up on soclabs.org 
home page

add your project to a 
chiplet via My 
Contributions

?
develop project 
concept, an 
image and 
summary



contest: project progress

simply add milestones at any 
time, design flow steps can guide 

add narrative describing your 
activities, especially in the 
education/collaboration track 



Thank you for listening, questions?

we are here to help you on your journey  
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