Chiplet-based electronics: evolution or revolution?

Alberto Sangiovanni-Vincentelli

The Edgar L. and Harold H. Buttner Chair of EECS, University of California at Berkeley

Co-founder and Member of the Board, Cadence

Outline

Big chips or chiplet-based implementation?
Early Chiplet Examples
The Design Problem
Is AI a Panacea?
Design Flows for Chiplet-based design
A Bit of Research

Berkeley

cādence

Once upon a time....

3,500 Transistors, 92K IPS

Cadely Congentrate 3C COTE MEMORIES 3 © 2024 Alberto Sangiovanni Vincentelli

Verifying the chip

Preparing the ma

Punched Card

Evolution: From Handcraft to...

Intel 4004

Intel 808

Intel 80286

4 © 2023 Alberto Sangiovanni Vincentelli

Regularity, Methodology, Re-usable Parts and Tools!

https://vcresearch.berkeley.edu/n ews/history-innovation-berkeleyentrepreneurs-companieschanged-way-we-live

1983: Intel 386

Engineering SCIENCE

Segesta (Σέγεστα) Temple, Sicily, 420 BC (Picture Taken 2020)

7 © 2024 Alberto Sangiovanni Vincentelli

How did we cope with complexity? (ASV, Corsi e Ricorsi: The EDA Story, IEEE Solid State Circuits Magazine, 2010)

Methodologies (Freedom from choice)

EDA and Design Methodology Evolution: What is Next?

Apple Monster Chip

Apple A11 Bionic

4.3Billion transistors 34 GOPS 87.66 mm2

chipworks

TESLA FSD SoC (36.8 teraOps, 260mm², 6Billion Tr)

NoC – Network on chip

Ö

- ISP Image Signal processing
- Safety Sys Lock step for ISO26262
- Security only TESLA certified software

Chip focused on Automotive L5 use case for Deep learning

Berkeley

11 © 2024 Alberto Sangiovanni Vincentelli

Nvidia Blackwell SoC 208 billion transistors

Luca Carloni Group (Columbia): ^{18.571} SoC: Platfomrs and Methodology

Berkeley

cādence°

The Concept of SoC Platform

- Innovation in SoC architectures and their design methodologies
 meeded to promote design reuse and collaboration
 - Architectures and methodologies must be developed together

Platform = architecture + methodology

An SoC architecture enables design reuse when it simplifies the integration of many components that are independently developed

An SoC methodology enables design collaboration when it allows designers to choose the preferred specification languages and design flows for the various components

An effective combination of architecture and methodology is a platform that maximizes the potential of open-source hardware

by scaling-up the number of components that can be integrated in an SoC and by enhancing the productivity of the designers who develop and use them 14

Berkeley

cadence

The EPOCHS-1 SoC: Chip Highlights

- 64 mm² SoC designed in 12 nm FinFET
- 35 clock domains; 23 power domains
- 8.4 MB on-chip SRAM memory
- Tile-based SoC architecture
- 34 tiles connected by a 6-plane 2-D mesh NoC
- The 74 Tbps NoC provides flexible orchestration of data
- 4 RISC-V processor tiles booting Linux SMP
- 23 accelerators of 14 different types
- 10 accelerators compose a cluster demonstrating a novel distributed hardware power management scheme
- Designed by a small team of PhD students, postdocs, and industry researchers in
 3 months with ESP, the open-source platform for agile SoC design

Berkeley

cadence

ESP is Silicon Proven: The EPOCHS-1 SOC

Technology	12nm FinFET				
Area	64mm ²				
#IOs	340				
Power Domains	23				
Clock Domains	35				
Power	83mW – 4.33W				
Total SRAM	8.4MB				
Max Frequency Range	680MHz – 1.6GHz				
Example Application Domain	Collaborative Autonomous Vehicles				

14.5 A 12nm Linux-SMP-Capable RISC-V SoC with 14 Accelerator Types, Distributed Hardware Power Management and Flexible NoC-Based Data Orchestration

Maico Cassel dos Santos^{*1}, Tianyu Jia^{*2}, Joseph Zuckerman^{*1}, Martin Cochet^{*3}, Davide Giri¹, Erik Jens Loscalzo¹, Karthik Swaminathan³, Thierry Tambe², Jeff Jun Zhang², Alper Buyuktosunoglu³, Kuan-Lin Chiu¹, Giuseppe Di Guglielmo¹, Paolo Mantovani¹, Luca Piccolboni¹, Gabriele Tombesi¹, David Trilla³, John-David Wellman³, En-Yu Yang², Aporva Amarnath³, Ying Jing⁴, Bakshree Mishra⁴, Joshua Park², Vignesh Suresh⁴, Sarita Adve⁴, Pradip Bose³, David Brooks², Luca P. Carloni¹, Kenneth L. Shepard¹, Gu-Yeon Wei²

¹Columbia University, New York, NY; ²Harvard University, Cambridge, MA ³IBM Research, Yorktown Heights, NY; ⁴University of Illinois, Urbana, IL *Equally Credited Authors

16

ISSCC 2024 / SESSION 14 / DIGITAL TECHNIQUES FOR SYSTEM ADAPTATION, POWER MANAGEMENT AND CLOCKING / 14.5

⁷¹⁰Luca Benini Group (Bologna+ETH): 18.571

Berkeley

cādence°

Multiple architectures with heterogeneous accelerators

© 2024 Alberto Sangiovanni Vincentelli

Start Small: Open Platform for Autonomous Nano-Drones

KG

Advanced autonomous drone

[1] A. Bachrach, "Skydio autonomy engine: Enabling the next generation

of autonomous flight," IEEE Hot Chips 33 Symposium (HCS), 2021

92.

Nano-drone

https://www.bitcraze.io/products/crazyflie-2-1

74844

https://www.skydio.com/skydio-2-plus

3D Mapping & Motion Planning Object recognition & Avoidance 0.06m2 & **800g of weight** Battery Capacity **5410mAh**

Smaller form factor of 0.008m2 Weight 27g (30X lighter) Battery capacity 250mAh (20X smaller)

Berkeley cadence

Can we fit sufficient intelligence in a 30X smaller payload, 20X lower energy budget?

Luca Benini

Achieving True Autonomy on Nano-UAVs

Multiple, complex, heterogeneous tasks at high speed and robustness fully on board

Obstacle avoidance & Navigation

Object detection

Berkeley cadence

Environment exploration

Multi-GOPS workload at extreme efficiency $\rightarrow P_{max}$ 100mW

C 1024 Alberto Sangiovanni Vincentelli

Luca Benini

Kraken: 22nm SoC, Multiple Heterogeneous Accelerators

The Kraken: an "Extreme Edge" Brain

- CUTIE dense ternary neural network accelerator
- SNE energy-proportional spiking neural network accelerator

Siracusa: 16nm SoC, Tightly Coupled at MRAM Accelerator

AN H	L2 Memory	PLLS		Ļ		ļ			ļ
2	2 MiB SRAM			Vega [1]	Diana [2]	Marsellus [3]	[4]	[5]	Siracusa
	SoC & Peripherals Neureka I-Cache	. Σ	Technology	22nm FDX	22nm FDX	22nm FDX	40nm	22nm	16nm FinFET
N 19 19			Area	10mm ²	10.24mm ²	8.7mm ²	25mm ²	8.76mm ²	16mm ²
* * * *		On-chip mem	1728 KB SRAM 4 MB MRAM (L3)	896 KB SRAM	1152 KB SRAM	768 KB	1428 KB	6400 KB SRAM 4 MB MRAM (L1)	
		Peak Perf 8b	32.2 GOPS	140 GOPS	90 GOPS	N/A	146 GOPS	698 GOPS	
		Peak Eff 8b	1.3 TOPS/W	2.07 TOPS/W	1.8 TOPS/W	0.94 TOPS/W	0.7 TOPS/W	2.68 TOPS/W	
P P P P P	Cores	Cores 4 MiB MBAM	Peak Eff (WxAb)	1.3 TOPS/W	4.1TOPS/W (2x2b) 600 TOPS/W (analog)	12.4 TOPS/W (2x2b)	60.6 TOPS/W (1x1b)	0.7 TOPS/W	8.84 TOPS/W (2x8b)
RHH			Area Eff	3.2 GOPS/mm ²	21.2 GOPS/mm ²	47.4 GOPS/mm ²	N/A	58.3 GOPS/mm ²	65.2 GOPS/mm ²
4 MiB SRAM Tile Memory	Weight Memory	 D. Rossi et al., JSS P. Houshmand et F. Conti et al., JSS M. Chang et al., I Q. Zhang et al., V 	5C'21 al., JSSC'23 C'23 SSCC'22 LSI Symposium'22	Balance efficiency, peak performance, area efficien without compromises in precision N-EUREKA 36-cores configuration					

[A. Prasad et al., "Siracusa: a 16nm Heterogeneous RISC-V SoC for Extended Reality with At-MRAM Neural Engine," IEEE Journal of Solid-State Circuits (accepted)]

Monolithic 2D-IC Design Limitations

AI Driving 3D-IC Proliferation

Productivity and cost improvements are critical

© 2024 Alberto Sangiovanni Vincentelli

Outline

Big chips or chiplet-based implementation?
Early Chiplet Examples
The Design Problem
Is AI a Panacea?
Design Flows for Chiplet-based design
A Bit of Research

Déjà vu all over again?

Source: ICE, "Roadmaps of Packaging Technology"

Figure 12-1. Early MCMs in ECL Mainframe Computers in the Mid 1980's

Figure 12-12. Rocket Control and Monitoring Hybrid

Figure 12-68. Ross hyperSPARC™ Module With Wirebonded Die on a Chip Substrate

Berkeley

cādence°

MCM Start-ups in the 80s: Polycon, Advanced Packaging Systems, ISA, Polylithics, Alcoa Microelectronics, nChip, TIÕs HDI and Pacific Microelectronics Center

Heterogenous Integration: Multiple Packaging Technologies

Silicon Stacking (3D-IC)

Berkeley

cādence

Module-Level 3D-IC Partitioning

2D module placement

- Multi-die partitioning and hierarchical floorplan synthesis in one unified algorithm (EFS)
- Consider wire length, bump interface penalty, different process nodes and module utilization on the functional module level

VS.

0.7

Shorter wire length in 3D

Nvidia Blackwell Superchip

Nvidia Blackwell Compute Tray

79.84

Berkeley cādence

Marvell MoChi Architecture (JSSCC '15 Key note: Sehat Sutardja)

JSSCC Key note: Sehat Sutardja

Marvell Company Newsroom 2015 © 2024 Alberto Sangiovanni Vincentelli

Berkeley

AMD Zen Chiplet Architecture

Traditional Monolithic

1st Gen EPYC CPU

1st gen: 10% additional silicon real estate for

- die-to-die communication blocks,
- redundant logic
- other unnamed add-ons

BUT 41% LOWER COST!

Use an Advanced Technology Where it is Needed Most Each IP in its Optimal Technology, 2nd Gen Infinity Fabric™ Connected

Centralized I/O Die Improves NUMA Superior Technology for CPU Performance and Power

ISSCC, 2021 © 2024 Alberto Sangiovanni Vincentelli

© 2024 Alberto Sangiovanni Vincentelli

Outline

Big chips or chiplet-based implementation?
Early Chiplet Examples
The Design Problem
Is AI a Panacea?
Design Flows for Chiplet-based design
A Bit of Research

Berkeley

cādence

Benini: Occamy 2.5D System: Chiplets on Passive Interposer

• *Hedwig* interposer

- 65nm, passive (BEOL only)
- Connects 2× 73 mm² Occamy chiplet (GF 12LP+) and 2× Micron HBM2E
- Distributes power and IOs
- Carrier PCB
 - RO4350B (low CTE, high stability)
 - LGA 2011 pinout adapted to fit ZIF socket
 - Stabilizes assembly and power
- Occamy system module
 - 432+2 RISC-V cores, 32 GiB HBM2E
 - 768 DP-GFLOP/s peak performance (HPC)

Berkeley

cadence

Berkeley

cādence°

Outline

- Big chips or chiplet-based implementation?
- Early Chiplet Examples
- The Design Problem
- Is Al a Panacea?
- Design Flows for Chiplet-based design

Berkeley

cādence

A Bit of Research

Definitions

Artificial Intelligence: The theory and development of computer systems able to perform tasks normally requiring human intelligence (Oxford Dictionary)

Machine Learning: algorithms and supporting theory for making predictions and decisions under uncertainty based on observed data.

Winters of AI

Investment & research = f (expectations, results)

Explosive growth, "4th industrial revolution"

Machine Learning

Deep Learning: Many Layer Neural Network

Machine Learning and Approximations

A deep learning architecture is a multilayer function with many parameters Parameters are determined by fitting a training set and verified using a test set Is there any guarantee that this function will approximate the «real» function?

Berkeley cadence

Generative AI

- Generative artificial intelligence (generative AI, GenAI, or GAI) is artificial intelligence capable of **generating text, images, videos, or other data** using generative models, often in response to prompts. Generative AI models learn the patterns and structure of their input training data and then generate new data that has similar characteristics.
- A generative model is a statistical model of the joint probability distribution P(X,Y) on a given observable variable X and target variable Y;

A generative model can be used to "generate" random instances (outcomes) of an observation x

Transformers

 Text is converted to numerical representations called tokens, and each token is converted into a vector via looking up from a word embedding table. At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism allowing the signal for key tokens to be amplified and less important tokens to be diminished.

Large Language Models (LLMs)

- A **large language model (LLM**) is a language model to achieve generalpurpose language understanding and generation. LLMs acquire these abilities by learning statistical relationships from text documents during a computationally intensive self-supervised and semi-supervised training process. LLMs are artificial neural networks. The largest and most capable, as of March 2024, are built with a decoder-only transformer-based architecture.
- LLMs include ChatGPT 40 with 1 Trillion parameters, Beijing Academy of Artificial Intelligence's Wu Dao 2.0, with 1.75 trillion parameters; Google's Switch Transformer, with 1.6 trillion parameters; Microsoft and Nvidia's MT-NLG, with 540 billion parameters; Hugging Face's Bloom, with 176 billion parameters; Google's LaMDA, with 137 billion parameters, Meta LLAMA 2 70Billion parameters.

Outline

Big chips or chiplet-based implementation?
Early Chiplet Examples
The Design Problem
Is AI a Panacea?
Design Flows for Chiplet-based design
A Bit of Research

Where and How to Use ML in IC Design?

Accelerating 3D-IC and Chiplet Designs

Integrity[™] 3D-IC Platform

Berkeley cadence

Case Study : Imec Experience

"With 3D-IC design continuing to gain momentum, there is an increased need to automate the planning and partitioning of a 3D stack die system more efficiently. "

ເກາຍc

10

71.644

Eric Beyne, senior fellow and program director, 3D System Integration, imec

3D-IC Design and Optimization

Design Architecture and IP

Outline

Big chips or chiplet-based implementation?
Early Chiplet Examples
The Design Problem
Is AI a Panacea?
Design Flows for Chiplet-based design
A Bit of Research

Berkeley cadence

Architecting with Chiplets Chiplet "LEGOs" enable *creativity*

© 2024 Alberto Sangiovanni Vincentelli

NBH

Hierarchical Planning and Optimization of System-level Design and Connectivity

Identifying the partition of original design into components to be implemented as chiplets for optimal performance/cost/re-use potential Berkeley cadence Re-use paradigm to allow multi-party integration and democratization

Intel Gen 14

Example

•

4 chiplets for laptops

• big.LITTLE CPU chiplet

59 © 2024 Alberto Sangiovanni Vincentelli

Once over lightly

Reuse chiplets

Move small cores to the SoC chiplet

Reused in more products NRE CO\$T --

Berkeley

60

cādence

How to Optimize Chiplet Choice?

Designing chiplets is the tradeoff between PPA and BOM

Designing common chiplet is the tradeoff between PPA, BOM, and NRE

79.84

Berkeley

cādence

Top Down: Extract Common Sub-systems by Partitioning

Partitioning is not enough

- Too many distinct pieces
- \$\$\$\$: tape out all of them? 😥
 - "We will go bankrupt right away.", anonymous semiconductor company CEO

Berkeley

cādence

IP 1

IP 2 IP 3

Partition and Merge

MERGE "similar" pieces later

Construct an overkill to "cover" multiple pieces Lower NRE Higher BOM Total Cost?

Chiplet Optimization

Final Words of Wisdom

Giuseppe Arcimboldo, The Librarian, 1566 Skokloster Castle, Sweden

Giorgio De Chirico, Le Muse Inquietanti, 1917-18 Collezione Mattioli, Milano, Italy

Evolution or Revolution?

 Natural progression in design methods towards higher level of abstractions and richer set of implementations

 Novel approach to implementation to cope with rising costs of integration and difficulty in Moore's law (by the way, Moore predicted chiplets...)

Berkeley

cādence

Potential disruption in design and supply chains

Nice problems for EDA researchers!

Outlook

What we need to improve:

- Flow to accelerate the design of chiplets doing a single SoC is less work than multiple chiplets with the same overall functionality
- Initially, everyone will be convinced they need slightly different chiplets for their system. In the end, they will find the common designs will be sufficient. Similar evolution in the IP space.
- Off-the-shelf available chiplets be reference designs, GDSII, or even silicon – especially for advanced nodes or community IPs

A compelling cost and TTM story with good enough PPA

67

Al is here to stay... BUT IT IS NOT A PANACEA

- However, foundations are still wobbly
- MANY problems need solutions
- Ethical and geopolitical issues
- Can we inject physics and mathematics into AI Models?

